3502
Comment:
|
3602
|
Deletions are marked like this. | Additions are marked like this. |
Line 13: | Line 13: |
Google scholar profile: [[http://scholar.google.com/citations?user=m5LzOyYAAAAJ | here]] |
|
Line 53: | Line 55: |
1. Jenča, G.: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/0910.2823 | 1. Jenča, G.: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/abs/0910.2823 |
Line 58: | Line 60: |
1. Jenča, G.: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/math/0602169 | 1. Jenča, G.: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/abs/math/0602169 |
Homepage of Gejza Jenča
- Slovak Republic
- Bratislava
- Slovak University of Technology
- Faculty of Civil Engineering
- Department of Mathematics and Descriptive Geometry
Email: <gejza.jenca@stuba.sk>
Google scholar profile: here
Education
- 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids
Employment
programmer for MicroStep HDO, meteorological software 1994--1998.
- Slovak University of Technology, assistant (later associated) professor 1998--now.
Teaching
- Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
- Since 2008: Operating Systems, Computer Networks, Internet Applications.
Science
I work in
- quantum logics: effect algebras, orthomodular lattices,
- MV-algebras,
- finite posets.
In addition, I try to learn something about
- algebraic topology,
- algebraic combinatorics.
Submitted manuscripts
Gejza Jenča, Peter Sarkoci: Linear extensions and order-preserving poset partitions, http://arxiv.org/abs/1112.5782
Accepted papers
Gejza Jenča, Extensions of witness mappings, to appear in Order, http://arxiv.org/abs/1007.4081
Gejza Jenča, Compatibility support mappings in effect algebras, to appear in Mathematica Slovaca, http://arxiv.org/abs/0910.2825
Papers
Jenča, G.: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823
Jenča, G.: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116
Jenča, G.: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61
Di Nola, A.,Holčapek, M.,Jenča, G.: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412
Jenča, G.: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216
Jenča, G.: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169
Jenča, G.: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285
Jenča, G.: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214
Jenča, G.,Pulmannová, S.: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671
Jenča, G.,Pulmannová, S.: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477
Jenča, G.: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411
Jenča, G.: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98
Jenča, G.: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319
Jenča, G.: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755