6051
Comment:
|
← Revision 56 as of 2024-11-19 14:59:34 ⇥
6348
|
Deletions are marked like this. | Additions are marked like this. |
Line 53: | Line 53: |
1. G. Jenča: N-free posets and orthomodularity, https://arxiv.org/abs/2401.12749 |
|
Line 56: | Line 57: |
1. G. Jenča, B. Lindenhovius: ''Quantum Suplatticces'', to appear in Electronic Proceedings in Theoretical Computer Science, [[attachment:JencaLindenhovius_QuantumSuplattices.pdf]] |
|
Line 59: | Line 58: |
1. G. Jenča: ''Voltage lifts of graphs from a category theory viewpoint'', Mathematica Slovaca, '''73''' (2023) 275-288 1. G. Jenča: ''Orthomodular posets are algebras over bounded posets with involution'', Soft Computing, '''26''' (2022) 491-498 1. G. Jenča: ''Pseudo effect algebras are algebras over bounded posets'', Fuzzy Sets and Systems, '''397''' (2020) 179-185 |
1. G. Jenča: ''Orthogonality Spaces Associated with Posets'', Order, '''40''' (2023) 575-588 http://arxiv.org/abs/2206.08113 1. G. Jenča, B. Lindenhovius: ''Quantum Suplattices'', Electronic Proceedings in Theoretical Computer Science, EPTCS, '''384''' (2023) 58-74 http://arxiv.org/abs/2308.16495 1. G. Jenča: ''Voltage lifts of graphs from a category theory viewpoint'', Mathematica Slovaca, '''73''' (2023) 275-288 http://arxiv.org/abs/2008.12055 1. G. Jenča: ''Orthomodular posets are algebras over bounded posets with involution'', Soft Computing, '''26''' (2022) 491-498 http://arxiv.org/abs/2108.13774 1. G. Jenča: ''Pseudo effect algebras are algebras over bounded posets'', Fuzzy Sets and Systems, '''397''' (2020) 179-185 http://arxiv.org/abs/1903.05399 |
Homepage of Gejza Jenča
- Slovak Republic
- Bratislava
- Slovak University of Technology
- Faculty of Civil Engineering
- Department of Mathematics and Descriptive Geometry
Email: <gejza.jenca@stuba.sk>
Google scholar profile: here
ResearchGate profile: here
Education
- 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids
Employment
programmer for MicroStep HDO, meteorological software 1994--1998.
- Slovak University of Technology, assistant (later associated) professor 1998--now.
Teaching
- Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
- Since 2008: Operating Systems, Computer Networks, Internet Applications.
- Since 2018: Linear Algebra
Research
I work in
- quantum logics: effect algebras, orthomodular lattices,
- MV-algebras,
- finite posets.
I try to learn something about
- algebraic topology,
- algebraic combinatorics.
- category theory
Submitted manuscripts
G. Jenča: N-free posets and orthomodularity, https://arxiv.org/abs/2401.12749
Accepted papers
Papers
G. Jenča: Orthogonality Spaces Associated with Posets, Order, 40 (2023) 575-588 http://arxiv.org/abs/2206.08113
G. Jenča, B. Lindenhovius: Quantum Suplattices, Electronic Proceedings in Theoretical Computer Science, EPTCS, 384 (2023) 58-74 http://arxiv.org/abs/2308.16495
G. Jenča: Voltage lifts of graphs from a category theory viewpoint, Mathematica Slovaca, 73 (2023) 275-288 http://arxiv.org/abs/2008.12055
G. Jenča: Orthomodular posets are algebras over bounded posets with involution, Soft Computing, 26 (2022) 491-498 http://arxiv.org/abs/2108.13774
G. Jenča: Pseudo effect algebras are algebras over bounded posets, Fuzzy Sets and Systems, 397 (2020) 179-185 http://arxiv.org/abs/1903.05399
G. Jenča: Two monads on the category of graphs, Mathematica Slovaca, 69 (2019) 257-266 http://arxiv.org/abs/1706.00081
G. Jenča: Effect Algebras as Presheaves on Finite Boolean Algebras, Order, 35 (2018) 525-540 http://arxiv.org/abs/1705.06498
A. Jenčová, G. Jenča: On Monoids in the Category of Sets and Relations, International Journal of Theoretical Physics, 56 (2017) 3757-3769 http://arxiv.org/abs/1703.03728
G. Jenča: A note on unitizations of generalized effect algebras, Soft Computing, 20 (2016) 115-118
G. Jenča: Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad, Order, 32 (2015) 439-448 http://arxiv.org/abs/1404.6263
G. Jenča, P. Sarkoci: Linear extensions and order-preserving poset partitions, Journal of Combinatorial Theory, Series A, 122 (2014) 28-38 http://arxiv.org/abs/1112.5782
G. Jenča: Congruences generated by ideals of the compatibility center of lattice effect algebras, Soft Computing, 17 (2013) 45-47
G. Jenča: Compatibility support mappings in effect algebras, Mathematica Slovaca, 62 (2012) 363-378 http://arxiv.org/abs/0910.2825
G. Jenča: Extensions of Witness Mappings, Order, 29 (2012) 533-544
G. Jenča: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823
G. Jenča: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116
G. Jenča: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61
A. Di Nola, M. Holčapek, G. Jenča: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412
G. Jenča: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169
G. Jenča: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216
G. Jenča: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285
G. Jenča, S. Pulmannová: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671
G. Jenča: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214
G. Jenča, I. Marinová, Z. Riečanová: Central elements, blocks and sharp elements of lattice effect algebras, , (2002) 28-33
G. Jenča, S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477
G. Jenča: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411
G. Jenča, Z. Riečanová: A Survey on Sharp Elements in Unsharp Quantum Logics, Journal of Electrical Engineering, 52 (2001) 237-239
G. Jenča, S. Pulmannová: Ideals and Quotients in Lattice Ordered Effect Algebras, Soft Computing, 5 (2001) 376-380
G. Jenča: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98 http://arxiv.org/abs/1504.00354
G. Jenča: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755
G. Jenča: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319
G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras, BUSEFAL, 80 (1999) 24-29
G. Jenča: Sheaf representations of partial abelian monoids, Journal of Electrical Engineering, 50 (1999) 66-70
G. Jenča: A note on ideals in generalized effect algebras, Tatra Mountains Mathematical Publications, 16 (1999) 81-85