Differences between revisions 4 and 12 (spanning 8 versions)
Revision 4 as of 2012-02-14 12:13:14
Size: 1314
Editor: jenca
Comment:
Revision 12 as of 2012-07-24 10:28:02
Size: 3633
Editor: jenca
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
Slovak University of Technology

Faculty of Civil Engineering

Department of Mathematics and Descriptive Geometry
{{attachment:bignew.png}}
Line 13: Line 9:
 * Slovak Republic
 * Bratislava
 * Slovak University of Technology
 * Faculty of Civil Engineering
 * Department of Mathematics and Descriptive Geometry
Line 16: Line 17:
Google scholar profile: [[http://scholar.google.com/citations?user=m5LzOyYAAAAJ | here]]
Line 18: Line 21:
 * 1995 Comenius University in Bratislava, Slovakia -- master degree in computer science  * 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
Line 20: Line 23:

== Employment ==

 * programmer for !MicroStep HDO, meteorological software 1994--1998.
 * Slovak University of Technology, assistant (later associated) professor 1998--now.
Line 23: Line 31:
 Basic courses in math (algebra, discrete mathematics, caclulus), most of the time. Since 2008 operating systems, computer networks, internet applications.  * Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
 *
Since 2008: Operating Systems, Computer Networks, Internet Applications.
Line 31: Line 40:
 * finite posets  * finite posets.

In addition, I try to learn something about

 * algebraic topology,
 * algebraic combinatorics.
Line 44: Line 58:
 1. Jenča, G.: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/abs/0910.2823
 1. Jenča, G.: ''0-homogeneous effect algebras'', Soft Computing, '''14''' (2010) 1111-1116
 1. Jenča, G.: ''Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras'', Order, '''27''' (2010) 41-61
 1. Di Nola, A.,Holčapek, M.,Jenča, G.: ''The category of MV-pairs'', Logic Journal of the IGPL, '''17''' (2009) 395-412
 1. Jenča, G.: ''The block structure of complete lattice ordered effect algebras'', Journal of the Australian Mathematical Society, '''83''' (2007) 181-216
 1. Jenča, G.: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/abs/math/0602169
 1. Jenča, G.: ''Boolean algebras R-generated by MV-effect algebras'', Fuzzy Sets and Systems, '''145''' (2004) 279-285
 1. Jenča, G.: ''Finite homogeneous and lattice ordered effect algebras'', Discrete Mathematics, '''272''' (2003) 197-214
 1. Jenča, G.,Pulmannová, S.: ''Orthocomplete effect algebras'', Proceedings of the American Mathematical Society, '''131''' (2003) 2663-2671
 1. Jenča, G.,Pulmannová, S.: ''Quotients of partial abelian monoids and the Riesz decomposition property'', Algebra Universalis, '''47''' (2002) 443-477
 1. Jenča, G.: ''A Cantor-Bernstein type theorem for effect algebras'', Algebra Universalis, '''48''' (2002) 399-411
 1. Jenča, G.: ''Blocks of homogeneous effect algebras'', Bulletin of the Australian Mathematical Society, '''64''' (2001) 81-98
 1. Jenča, G.: ''Notes on R1-ideals in partial abelian monoids'', Algebra Universalis, '''43''' (2000) 307-319
 1. Jenča, G.: ''Subcentral ideals in generalized effect algebras'', International Journal of Theoretical Physics, '''39''' (2000) 745-755

Homepage of Gejza Jenča

bignew.png

  • Slovak Republic
  • Bratislava
  • Slovak University of Technology
  • Faculty of Civil Engineering
  • Department of Mathematics and Descriptive Geometry

Email: <gejza.jenca@stuba.sk>

Google scholar profile: here

Education

  • 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
  • 2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids

Employment

  • programmer for MicroStep HDO, meteorological software 1994--1998.

  • Slovak University of Technology, assistant (later associated) professor 1998--now.

Teaching

  • Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
  • Since 2008: Operating Systems, Computer Networks, Internet Applications.

Science

I work in

  • quantum logics: effect algebras, orthomodular lattices,
  • MV-algebras,
  • finite posets.

In addition, I try to learn something about

  • algebraic topology,
  • algebraic combinatorics.

Submitted manuscripts

  1. Gejza Jenča, Peter Sarkoci: Linear extensions and order-preserving poset partitions, http://arxiv.org/abs/1112.5782

Accepted papers

  1. Gejza Jenča, Extensions of witness mappings, to appear in Order, http://arxiv.org/abs/1007.4081

  2. Gejza Jenča, Compatibility support mappings in effect algebras, to appear in Mathematica Slovaca, http://arxiv.org/abs/0910.2825

Papers

  1. Jenča, G.: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823

  2. Jenča, G.: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116

  3. Jenča, G.: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61

  4. Di Nola, A.,Holčapek, M.,Jenča, G.: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412

  5. Jenča, G.: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216

  6. Jenča, G.: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169

  7. Jenča, G.: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285

  8. Jenča, G.: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214

  9. Jenča, G.,Pulmannová, S.: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671

  10. Jenča, G.,Pulmannová, S.: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477

  11. Jenča, G.: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411

  12. Jenča, G.: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98

  13. Jenča, G.: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319

  14. Jenča, G.: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755


CategoryHomepage

KMaDGWiki: jenca (last edited 2023-08-18 11:18:18 by jenca)