Differences between revisions 38 and 45 (spanning 7 versions)
Revision 38 as of 2019-07-19 09:28:31
Size: 5599
Editor: jenca
Comment:
Revision 45 as of 2022-06-16 11:46:26
Size: 5864
Editor: jenca
Comment:
Deletions are marked like this. Additions are marked like this.
Line 15: Line 15:

[[attachment:jenca_ssaos_2021.pdf]]

[[attachment:1.pdf]]
[[attachment:2.pdf]]
Line 53: Line 59:
 
  
Line 57: Line 62:
 1. G.Jenča: ''Pseudo effect algebras are algebras over bounded posets'', https://arxiv.org/abs/1903.05399  1. G. Jenča ''Derived voltage graphs come from an adjunction'', https://arxiv.org/abs/2008.12055 (to appear in Mathematica Slovaca)
Line 60: Line 65:

 1. G. Jenča: ''Pseudo effect algebras are algebras over bounded posets'', Fuzzy Sets and Systems, '''397''' (2020) https://arxiv.org/abs/1903.05399

Homepage of Gejza Jenča

bignew.png

  • Slovak Republic
  • Bratislava
  • Slovak University of Technology
  • Faculty of Civil Engineering
  • Department of Mathematics and Descriptive Geometry

Email: <gejza.jenca@stuba.sk>

jenca_ssaos_2021.pdf

1.pdf 2.pdf

Google scholar profile: here

ResearchGate profile: here

Education

  • 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
  • 2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids

Employment

  • programmer for MicroStep HDO, meteorological software 1994--1998.

  • Slovak University of Technology, assistant (later associated) professor 1998--now.

Teaching

  • Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
  • Since 2008: Operating Systems, Computer Networks, Internet Applications.
  • Since 2018: Linear Algebra

Research

I work in

  • quantum logics: effect algebras, orthomodular lattices,
  • MV-algebras,
  • finite posets.

I try to learn something about

  • algebraic topology,
  • algebraic combinatorics.
  • category theory

Submitted manuscripts

Accepted papers

  1. G. Jenča Derived voltage graphs come from an adjunction, https://arxiv.org/abs/2008.12055 (to appear in Mathematica Slovaca)

Papers

  1. G. Jenča: Pseudo effect algebras are algebras over bounded posets, Fuzzy Sets and Systems, 397 (2020) https://arxiv.org/abs/1903.05399

  2. G. Jenča: Two monads on the category of graphs, Mathematica Slovaca, 69 (2019) 257-266 http://arxiv.org/abs/1706.00081

  3. G. Jenča: Effect Algebras as Presheaves on Finite Boolean Algebras, Order, 35 (2018) 525-540 http://arxiv.org/abs/1705.06498

  4. A. Jenčová, G. Jenča: On Monoids in the Category of Sets and Relations, International Journal of Theoretical Physics, 56 (2017) 3757-3769 http://arxiv.org/abs/1703.03728

  5. G. Jenča: A note on unitizations of generalized effect algebras, Soft Computing, 20 (2016) 115-118

  6. G. Jenča: Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad, Order, 32 (2015) 439-448 http://arxiv.org/abs/1404.6263

  7. G. Jenča, P. Sarkoci: Linear extensions and order-preserving poset partitions, Journal of Combinatorial Theory, Series A, 122 (2014) 28-38 http://arxiv.org/abs/1112.5782

  8. G. Jenča: Congruences generated by ideals of the compatibility center of lattice effect algebras, Soft Computing, 17 (2013) 45-47

  9. G. Jenča: Compatibility support mappings in effect algebras, Mathematica Slovaca, 62 (2012) 363-378 http://arxiv.org/abs/0910.2825

  10. G. Jenča: Extensions of Witness Mappings, Order, 29 (2012) 533-544

  11. G. Jenča: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823

  12. G. Jenča: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61

  13. G. Jenča: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116

  14. A. Di Nola, M. Holčapek, G. Jenča: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412

  15. G. Jenča: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169

  16. G. Jenča: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216

  17. G. Jenča: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285

  18. G. Jenča: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214

  19. G. Jenča, S. Pulmannová: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671

  20. G. Jenča: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411

  21. G. Jenča, S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477

  22. G. Jenča, I. Marinová, Z. Riečanová: Central elements, blocks and sharp elements of lattice effect algebras, , (2002) 28-33

  23. G. Jenča, Z. Riečanová: A Survey on Sharp Elements in Unsharp Quantum Logics, Journal of Electrical Engineering, 52 (2001) 237-239

  24. G. Jenča: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98 http://arxiv.org/abs/1504.00354

  25. G. Jenča, S. Pulmannová: Ideals and Quotients in Lattice Ordered Effect Algebras, Soft Computing, 5 (2001) 376-380

  26. G. Jenča: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755

  27. G. Jenča: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319

  28. G. Jenča: A note on ideals in generalized effect algebras, Tatra Mountains Mathematical Publications, 16 (1999) 81-85

  29. G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras, BUSEFAL, 80 (1999) 24-29

  30. G. Jenča: Sheaf representations of partial abelian monoids, Journal of Electrical Engineering, 50 (1999) 66-70


CategoryHomepage

KMaDGWiki: jenca (last edited 2024-11-19 14:59:34 by jenca)