Differences between revisions 2 and 30 (spanning 28 versions)
Revision 2 as of 2012-02-14 11:56:16
Size: 932
Editor: jenca
Comment:
Revision 30 as of 2017-05-24 08:53:02
Size: 5056
Editor: jenca
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
Slovak University of Technology

Faculty of Civil Engineering

Department of Mathematics and Descriptive Geometry
{{attachment:bignew.png}}
Line 13: Line 9:
 * Slovak Republic
 * Bratislava
 * Slovak University of Technology
 * Faculty of Civil Engineering
 * Department of Mathematics and Descriptive Geometry
Line 16: Line 17:
Google scholar profile: [[http://scholar.google.com/citations?user=m5LzOyYAAAAJ | here]]
Line 18: Line 21:
 * 1995 Comenius University in Bratislava, Slovakia -- master degree in computer science  * 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
Line 20: Line 23:

== Employment ==

 * programmer for !MicroStep HDO, meteorological software 1994--1998.
 * Slovak University of Technology, assistant (later associated) professor 1998--now.
Line 23: Line 31:
 Basic courses in math (algebra, discrete mathematics, caclulus), most of the time. Since 2008 operating systems, computer networks, internet applications.  * Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
 *
Since 2008: Operating Systems, Computer Networks, Internet Applications.
Line 25: Line 34:
== Science == == Research ==
Line 31: Line 40:
 * finite posets  * finite posets.
Line 33: Line 42:
=== Preprints of submitted papers === I try to learn something about
Line 35: Line 44:
 1.  * algebraic topology,
 * algebraic combinatorics.
 * category theory
Line 37: Line 48:
=== List of papers === ?
Line 39: Line 50:
=== Submitted manuscripts ===
Line 40: Line 52:
 1. G.Jenča: ''Effect algebras as presheaves on finite Boolean algebras'', https://arxiv.org/abs/1705.06498
Line 41: Line 54:
=== Accepted papers ===
Line 42: Line 56:
----  1. A. Jenčová, G. Jenča: ''On monoids in the category of sets and relations'', International Journal of Theoretical Physics (to appear) https://arxiv.org/abs/1703.03728

=== Papers ===
 
 1. G. Jenča: ''A note on unitizations of generalized effect algebras'', Soft Computing, '''20''' (2016) 115-118
 1. G. Jenča: ''Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad'', Order, '''32''' (2015) 439-448 http://arxiv.org/abs/1404.6263
 1. G. Jenča, P. Sarkoci: ''Linear extensions and order-preserving poset partitions'', Journal of Combinatorial Theory, Series A, '''122''' (2014) 28-38 http://arxiv.org/abs/1112.5782
 1. G. Jenča: ''Congruences generated by ideals of the compatibility center of lattice effect algebras'', Soft Computing, '''17''' (2013) 45-47
 1. G. Jenča: ''Compatibility support mappings in effect algebras'', Mathematica Slovaca, '''62''' (2012) 363-378 http://arxiv.org/abs/0910.2825
 1. G. Jenča: ''Extensions of Witness Mappings'', Order, '''29''' (2012) 533-544
 1. G. Jenča: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/abs/0910.2823
 1. G. Jenča: ''Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras'', Order, '''27''' (2010) 41-61
 1. G. Jenča: ''0-homogeneous effect algebras'', Soft Computing, '''14''' (2010) 1111-1116
 1. A. Di Nola, M. Holčapek, G. Jenča: ''The category of MV-pairs'', Logic Journal of the IGPL, '''17''' (2009) 395-412
 1. G. Jenča: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/abs/math/0602169
 1. G. Jenča: ''The block structure of complete lattice ordered effect algebras'', Journal of the Australian Mathematical Society, '''83''' (2007) 181-216
 1. G. Jenča: ''Boolean algebras R-generated by MV-effect algebras'', Fuzzy Sets and Systems, '''145''' (2004) 279-285
 1. G. Jenča: ''Finite homogeneous and lattice ordered effect algebras'', Discrete Mathematics, '''272''' (2003) 197-214
 1. G. Jenča, S. Pulmannová: ''Orthocomplete effect algebras'', Proceedings of the American Mathematical Society, '''131''' (2003) 2663-2671
 1. G. Jenča: ''A Cantor-Bernstein type theorem for effect algebras'', Algebra Universalis, '''48''' (2002) 399-411
 1. G. Jenča, S. Pulmannová: ''Quotients of partial abelian monoids and the Riesz decomposition property'', Algebra Universalis, '''47''' (2002) 443-477
 1. G. Jenča, Z. Riečanová: ''A Survey on Sharp Elements in Unsharp Quantum Logics'', Journal of Electrical Engineering, '''52''' (2001) 237-239
 1. G. Jenča: ''Blocks of homogeneous effect algebras'', Bulletin of the Australian Mathematical Society, '''64''' (2001) 81-98 http://arxiv.org/abs/1504.00354
 1. G. Jenča, S. Pulmannová: ''Ideals and Quotients in Lattice Ordered Effect Algebras'', Soft Computing, '''5''' (2001) 376-380
 1. G. Jenča: ''Subcentral ideals in generalized effect algebras'', International Journal of Theoretical Physics, '''39''' (2000) 745-755
 1. G. Jenča: ''Notes on R1-ideals in partial abelian monoids'', Algebra Universalis, '''43''' (2000) 307-319
 1. G. Jenča: ''A note on ideals in generalized effect algebras'', Tatra Mountains Mathematical Publications, '''16''' (1999) 81-85
 1. G. Jenča, Z. Riečanová: ''On sharp elements in lattice ordered effect algebras'', BUSEFAL, '''80''' (1999) 24-29
 1. G. Jenča: ''Sheaf representations of partial abelian monoids'', Journal of Electrical Engineering, '''50''' (1999) 66-70

 ----

Homepage of Gejza Jenča

bignew.png

  • Slovak Republic
  • Bratislava
  • Slovak University of Technology
  • Faculty of Civil Engineering
  • Department of Mathematics and Descriptive Geometry

Email: <gejza.jenca@stuba.sk>

Google scholar profile: here

Education

  • 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
  • 2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids

Employment

  • programmer for MicroStep HDO, meteorological software 1994--1998.

  • Slovak University of Technology, assistant (later associated) professor 1998--now.

Teaching

  • Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
  • Since 2008: Operating Systems, Computer Networks, Internet Applications.

Research

I work in

  • quantum logics: effect algebras, orthomodular lattices,
  • MV-algebras,
  • finite posets.

I try to learn something about

  • algebraic topology,
  • algebraic combinatorics.
  • category theory

?

Submitted manuscripts

  1. G.Jenča: Effect algebras as presheaves on finite Boolean algebras, https://arxiv.org/abs/1705.06498

Accepted papers

  1. A. Jenčová, G. Jenča: On monoids in the category of sets and relations, International Journal of Theoretical Physics (to appear) https://arxiv.org/abs/1703.03728

Papers

  • 
  • G. Jenča: A note on unitizations of generalized effect algebras, Soft Computing, 20 (2016) 115-118

  • G. Jenča: Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad, Order, 32 (2015) 439-448 http://arxiv.org/abs/1404.6263

  • G. Jenča, P. Sarkoci: Linear extensions and order-preserving poset partitions, Journal of Combinatorial Theory, Series A, 122 (2014) 28-38 http://arxiv.org/abs/1112.5782

  • G. Jenča: Congruences generated by ideals of the compatibility center of lattice effect algebras, Soft Computing, 17 (2013) 45-47

  • G. Jenča: Compatibility support mappings in effect algebras, Mathematica Slovaca, 62 (2012) 363-378 http://arxiv.org/abs/0910.2825

  • G. Jenča: Extensions of Witness Mappings, Order, 29 (2012) 533-544

  • G. Jenča: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823

  • G. Jenča: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61

  • G. Jenča: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116

  • A. Di Nola, M. Holčapek, G. Jenča: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412

  • G. Jenča: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169

  • G. Jenča: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216

  • G. Jenča: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285

  • G. Jenča: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214

  • G. Jenča, S. Pulmannová: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671

  • G. Jenča: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411

  • G. Jenča, S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477

  • G. Jenča, Z. Riečanová: A Survey on Sharp Elements in Unsharp Quantum Logics, Journal of Electrical Engineering, 52 (2001) 237-239

  • G. Jenča: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98 http://arxiv.org/abs/1504.00354

  • G. Jenča, S. Pulmannová: Ideals and Quotients in Lattice Ordered Effect Algebras, Soft Computing, 5 (2001) 376-380

  • G. Jenča: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755

  • G. Jenča: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319

  • G. Jenča: A note on ideals in generalized effect algebras, Tatra Mountains Mathematical Publications, 16 (1999) 81-85

  • G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras, BUSEFAL, 80 (1999) 24-29

  • G. Jenča: Sheaf representations of partial abelian monoids, Journal of Electrical Engineering, 50 (1999) 66-70


CategoryHomepage

KMaDGWiki: jenca (last edited 2024-11-19 14:59:34 by jenca)