932
Comment:
|
5056
|
Deletions are marked like this. | Additions are marked like this. |
Line 6: | Line 6: |
Slovak University of Technology Faculty of Civil Engineering Department of Mathematics and Descriptive Geometry |
{{attachment:bignew.png}} |
Line 13: | Line 9: |
* Slovak Republic * Bratislava * Slovak University of Technology * Faculty of Civil Engineering * Department of Mathematics and Descriptive Geometry |
|
Line 16: | Line 17: |
Google scholar profile: [[http://scholar.google.com/citations?user=m5LzOyYAAAAJ | here]] |
|
Line 18: | Line 21: |
* 1995 Comenius University in Bratislava, Slovakia -- master degree in computer science | * 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science |
Line 20: | Line 23: |
== Employment == * programmer for !MicroStep HDO, meteorological software 1994--1998. * Slovak University of Technology, assistant (later associated) professor 1998--now. |
|
Line 23: | Line 31: |
Basic courses in math (algebra, discrete mathematics, caclulus), most of the time. Since 2008 operating systems, computer networks, internet applications. | * Basic courses in math (algebra, discrete mathematics, caclulus), most of the time. * Since 2008: Operating Systems, Computer Networks, Internet Applications. |
Line 25: | Line 34: |
== Science == | == Research == |
Line 31: | Line 40: |
* finite posets | * finite posets. |
Line 33: | Line 42: |
=== Preprints of submitted papers === | I try to learn something about |
Line 35: | Line 44: |
1. | * algebraic topology, * algebraic combinatorics. * category theory |
Line 37: | Line 48: |
=== List of papers === | ? |
Line 39: | Line 50: |
=== Submitted manuscripts === | |
Line 40: | Line 52: |
1. G.Jenča: ''Effect algebras as presheaves on finite Boolean algebras'', https://arxiv.org/abs/1705.06498 | |
Line 41: | Line 54: |
=== Accepted papers === | |
Line 42: | Line 56: |
---- | 1. A. Jenčová, G. Jenča: ''On monoids in the category of sets and relations'', International Journal of Theoretical Physics (to appear) https://arxiv.org/abs/1703.03728 === Papers === 1. G. Jenča: ''A note on unitizations of generalized effect algebras'', Soft Computing, '''20''' (2016) 115-118 1. G. Jenča: ''Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad'', Order, '''32''' (2015) 439-448 http://arxiv.org/abs/1404.6263 1. G. Jenča, P. Sarkoci: ''Linear extensions and order-preserving poset partitions'', Journal of Combinatorial Theory, Series A, '''122''' (2014) 28-38 http://arxiv.org/abs/1112.5782 1. G. Jenča: ''Congruences generated by ideals of the compatibility center of lattice effect algebras'', Soft Computing, '''17''' (2013) 45-47 1. G. Jenča: ''Compatibility support mappings in effect algebras'', Mathematica Slovaca, '''62''' (2012) 363-378 http://arxiv.org/abs/0910.2825 1. G. Jenča: ''Extensions of Witness Mappings'', Order, '''29''' (2012) 533-544 1. G. Jenča: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/abs/0910.2823 1. G. Jenča: ''Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras'', Order, '''27''' (2010) 41-61 1. G. Jenča: ''0-homogeneous effect algebras'', Soft Computing, '''14''' (2010) 1111-1116 1. A. Di Nola, M. Holčapek, G. Jenča: ''The category of MV-pairs'', Logic Journal of the IGPL, '''17''' (2009) 395-412 1. G. Jenča: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/abs/math/0602169 1. G. Jenča: ''The block structure of complete lattice ordered effect algebras'', Journal of the Australian Mathematical Society, '''83''' (2007) 181-216 1. G. Jenča: ''Boolean algebras R-generated by MV-effect algebras'', Fuzzy Sets and Systems, '''145''' (2004) 279-285 1. G. Jenča: ''Finite homogeneous and lattice ordered effect algebras'', Discrete Mathematics, '''272''' (2003) 197-214 1. G. Jenča, S. Pulmannová: ''Orthocomplete effect algebras'', Proceedings of the American Mathematical Society, '''131''' (2003) 2663-2671 1. G. Jenča: ''A Cantor-Bernstein type theorem for effect algebras'', Algebra Universalis, '''48''' (2002) 399-411 1. G. Jenča, S. Pulmannová: ''Quotients of partial abelian monoids and the Riesz decomposition property'', Algebra Universalis, '''47''' (2002) 443-477 1. G. Jenča, Z. Riečanová: ''A Survey on Sharp Elements in Unsharp Quantum Logics'', Journal of Electrical Engineering, '''52''' (2001) 237-239 1. G. Jenča: ''Blocks of homogeneous effect algebras'', Bulletin of the Australian Mathematical Society, '''64''' (2001) 81-98 http://arxiv.org/abs/1504.00354 1. G. Jenča, S. Pulmannová: ''Ideals and Quotients in Lattice Ordered Effect Algebras'', Soft Computing, '''5''' (2001) 376-380 1. G. Jenča: ''Subcentral ideals in generalized effect algebras'', International Journal of Theoretical Physics, '''39''' (2000) 745-755 1. G. Jenča: ''Notes on R1-ideals in partial abelian monoids'', Algebra Universalis, '''43''' (2000) 307-319 1. G. Jenča: ''A note on ideals in generalized effect algebras'', Tatra Mountains Mathematical Publications, '''16''' (1999) 81-85 1. G. Jenča, Z. Riečanová: ''On sharp elements in lattice ordered effect algebras'', BUSEFAL, '''80''' (1999) 24-29 1. G. Jenča: ''Sheaf representations of partial abelian monoids'', Journal of Electrical Engineering, '''50''' (1999) 66-70 ---- |
Homepage of Gejza Jenča
- Slovak Republic
- Bratislava
- Slovak University of Technology
- Faculty of Civil Engineering
- Department of Mathematics and Descriptive Geometry
Email: <gejza.jenca@stuba.sk>
Google scholar profile: here
Education
- 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids
Employment
programmer for MicroStep HDO, meteorological software 1994--1998.
- Slovak University of Technology, assistant (later associated) professor 1998--now.
Teaching
- Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
- Since 2008: Operating Systems, Computer Networks, Internet Applications.
Research
I work in
- quantum logics: effect algebras, orthomodular lattices,
- MV-algebras,
- finite posets.
I try to learn something about
- algebraic topology,
- algebraic combinatorics.
- category theory
?
Submitted manuscripts
G.Jenča: Effect algebras as presheaves on finite Boolean algebras, https://arxiv.org/abs/1705.06498
Accepted papers
A. Jenčová, G. Jenča: On monoids in the category of sets and relations, International Journal of Theoretical Physics (to appear) https://arxiv.org/abs/1703.03728
Papers
-
G. Jenča: A note on unitizations of generalized effect algebras, Soft Computing, 20 (2016) 115-118
G. Jenča: Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad, Order, 32 (2015) 439-448 http://arxiv.org/abs/1404.6263
G. Jenča, P. Sarkoci: Linear extensions and order-preserving poset partitions, Journal of Combinatorial Theory, Series A, 122 (2014) 28-38 http://arxiv.org/abs/1112.5782
G. Jenča: Congruences generated by ideals of the compatibility center of lattice effect algebras, Soft Computing, 17 (2013) 45-47
G. Jenča: Compatibility support mappings in effect algebras, Mathematica Slovaca, 62 (2012) 363-378 http://arxiv.org/abs/0910.2825
G. Jenča: Extensions of Witness Mappings, Order, 29 (2012) 533-544
G. Jenča: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823
G. Jenča: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61
G. Jenča: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116
A. Di Nola, M. Holčapek, G. Jenča: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412
G. Jenča: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169
G. Jenča: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216
G. Jenča: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285
G. Jenča: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214
G. Jenča, S. Pulmannová: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671
G. Jenča: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411
G. Jenča, S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477
G. Jenča, Z. Riečanová: A Survey on Sharp Elements in Unsharp Quantum Logics, Journal of Electrical Engineering, 52 (2001) 237-239
G. Jenča: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98 http://arxiv.org/abs/1504.00354
G. Jenča, S. Pulmannová: Ideals and Quotients in Lattice Ordered Effect Algebras, Soft Computing, 5 (2001) 376-380
G. Jenča: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755
G. Jenča: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319
G. Jenča: A note on ideals in generalized effect algebras, Tatra Mountains Mathematical Publications, 16 (1999) 81-85
G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras, BUSEFAL, 80 (1999) 24-29
G. Jenča: Sheaf representations of partial abelian monoids, Journal of Electrical Engineering, 50 (1999) 66-70