153
Comment:
|
5717
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
== Your Name == | = Homepage of Gejza Jenča = {{attachment:bignew.png}} * Slovak Republic * Bratislava * Slovak University of Technology * Faculty of Civil Engineering * Department of Mathematics and Descriptive Geometry |
Line 8: | Line 16: |
... | Google scholar profile: [[http://scholar.google.com/citations?user=m5LzOyYAAAAJ | here]] |
Line 10: | Line 18: |
---- | !ResearchGate profile: [[https://www.researchgate.net/profile/Gejza_Jenca | here]] == Education == * 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science * 2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: ''Quotients of partial abelian monoids'' == Employment == * programmer for !MicroStep HDO, meteorological software 1994--1998. * Slovak University of Technology, assistant (later associated) professor 1998--now. == Teaching == * Basic courses in math (algebra, discrete mathematics, caclulus), most of the time. * Since 2008: Operating Systems, Computer Networks, Internet Applications. * Since 2018: Linear Algebra == Research == I work in * quantum logics: effect algebras, orthomodular lattices, * MV-algebras, * finite posets. I try to learn something about * algebraic topology, * algebraic combinatorics. * category theory === Submitted manuscripts === 1. G. Jenča ''Derived voltage graphs come from an adjunction'', https://arxiv.org/abs/2008.12055 === Accepted papers === === Papers === 1. G. Jenča: ''Pseudo effect algebras are algebras over bounded posets'', '''397''' (2020) https://arxiv.org/abs/1903.05399 1. G. Jenča: ''Two monads on the category of graphs'', Mathematica Slovaca, '''69''' (2019) 257-266 http://arxiv.org/abs/1706.00081 1. G. Jenča: ''Effect Algebras as Presheaves on Finite Boolean Algebras'', Order, '''35''' (2018) 525-540 http://arxiv.org/abs/1705.06498 1. A. Jenčová, G. Jenča: ''On Monoids in the Category of Sets and Relations'', International Journal of Theoretical Physics, '''56''' (2017) 3757-3769 http://arxiv.org/abs/1703.03728 1. G. Jenča: ''A note on unitizations of generalized effect algebras'', Soft Computing, '''20''' (2016) 115-118 1. G. Jenča: ''Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad'', Order, '''32''' (2015) 439-448 http://arxiv.org/abs/1404.6263 1. G. Jenča, P. Sarkoci: ''Linear extensions and order-preserving poset partitions'', Journal of Combinatorial Theory, Series A, '''122''' (2014) 28-38 http://arxiv.org/abs/1112.5782 1. G. Jenča: ''Congruences generated by ideals of the compatibility center of lattice effect algebras'', Soft Computing, '''17''' (2013) 45-47 1. G. Jenča: ''Compatibility support mappings in effect algebras'', Mathematica Slovaca, '''62''' (2012) 363-378 http://arxiv.org/abs/0910.2825 1. G. Jenča: ''Extensions of Witness Mappings'', Order, '''29''' (2012) 533-544 1. G. Jenča: ''Coexistence in interval effect algebras'', Proceedings of the American Mathematical Society, '''139''' (2011) 331-344 http://arxiv.org/abs/0910.2823 1. G. Jenča: ''Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras'', Order, '''27''' (2010) 41-61 1. G. Jenča: ''0-homogeneous effect algebras'', Soft Computing, '''14''' (2010) 1111-1116 1. A. Di Nola, M. Holčapek, G. Jenča: ''The category of MV-pairs'', Logic Journal of the IGPL, '''17''' (2009) 395-412 1. G. Jenča: ''A representation theorem for MV-algebras'', Soft Computing, '''11''' (2007) 557-564 http://arxiv.org/abs/math/0602169 1. G. Jenča: ''The block structure of complete lattice ordered effect algebras'', Journal of the Australian Mathematical Society, '''83''' (2007) 181-216 1. G. Jenča: ''Boolean algebras R-generated by MV-effect algebras'', Fuzzy Sets and Systems, '''145''' (2004) 279-285 1. G. Jenča: ''Finite homogeneous and lattice ordered effect algebras'', Discrete Mathematics, '''272''' (2003) 197-214 1. G. Jenča, S. Pulmannová: ''Orthocomplete effect algebras'', Proceedings of the American Mathematical Society, '''131''' (2003) 2663-2671 1. G. Jenča: ''A Cantor-Bernstein type theorem for effect algebras'', Algebra Universalis, '''48''' (2002) 399-411 1. G. Jenča, S. Pulmannová: ''Quotients of partial abelian monoids and the Riesz decomposition property'', Algebra Universalis, '''47''' (2002) 443-477 1. G. Jenča, I. Marinová, Z. Riečanová: ''Central elements, blocks and sharp elements of lattice effect algebras'', , '''''' (2002) 28-33 1. G. Jenča, Z. Riečanová: ''A Survey on Sharp Elements in Unsharp Quantum Logics'', Journal of Electrical Engineering, '''52''' (2001) 237-239 1. G. Jenča: ''Blocks of homogeneous effect algebras'', Bulletin of the Australian Mathematical Society, '''64''' (2001) 81-98 http://arxiv.org/abs/1504.00354 1. G. Jenča, S. Pulmannová: ''Ideals and Quotients in Lattice Ordered Effect Algebras'', Soft Computing, '''5''' (2001) 376-380 1. G. Jenča: ''Subcentral ideals in generalized effect algebras'', International Journal of Theoretical Physics, '''39''' (2000) 745-755 1. G. Jenča: ''Notes on R1-ideals in partial abelian monoids'', Algebra Universalis, '''43''' (2000) 307-319 1. G. Jenča: ''A note on ideals in generalized effect algebras'', Tatra Mountains Mathematical Publications, '''16''' (1999) 81-85 1. G. Jenča, Z. Riečanová: ''On sharp elements in lattice ordered effect algebras'', BUSEFAL, '''80''' (1999) 24-29 1. G. Jenča: ''Sheaf representations of partial abelian monoids'', Journal of Electrical Engineering, '''50''' (1999) 66-70 ---- |
Homepage of Gejza Jenča
- Slovak Republic
- Bratislava
- Slovak University of Technology
- Faculty of Civil Engineering
- Department of Mathematics and Descriptive Geometry
Email: <gejza.jenca@stuba.sk>
Google scholar profile: here
ResearchGate profile: here
Education
- 1994 Comenius University in Bratislava, Slovakia -- master degree in computer science
2001 Slovak University of Technology in Bratislava, Slovakia -- PhD in applied mathematics. Thesis title: Quotients of partial abelian monoids
Employment
programmer for MicroStep HDO, meteorological software 1994--1998.
- Slovak University of Technology, assistant (later associated) professor 1998--now.
Teaching
- Basic courses in math (algebra, discrete mathematics, caclulus), most of the time.
- Since 2008: Operating Systems, Computer Networks, Internet Applications.
- Since 2018: Linear Algebra
Research
I work in
- quantum logics: effect algebras, orthomodular lattices,
- MV-algebras,
- finite posets.
I try to learn something about
- algebraic topology,
- algebraic combinatorics.
- category theory
Submitted manuscripts
G. Jenča Derived voltage graphs come from an adjunction, https://arxiv.org/abs/2008.12055
Accepted papers
Papers
G. Jenča: Pseudo effect algebras are algebras over bounded posets, 397 (2020) https://arxiv.org/abs/1903.05399
G. Jenča: Two monads on the category of graphs, Mathematica Slovaca, 69 (2019) 257-266 http://arxiv.org/abs/1706.00081
G. Jenča: Effect Algebras as Presheaves on Finite Boolean Algebras, Order, 35 (2018) 525-540 http://arxiv.org/abs/1705.06498
A. Jenčová, G. Jenča: On Monoids in the Category of Sets and Relations, International Journal of Theoretical Physics, 56 (2017) 3757-3769 http://arxiv.org/abs/1703.03728
G. Jenča: A note on unitizations of generalized effect algebras, Soft Computing, 20 (2016) 115-118
G. Jenča: Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad, Order, 32 (2015) 439-448 http://arxiv.org/abs/1404.6263
G. Jenča, P. Sarkoci: Linear extensions and order-preserving poset partitions, Journal of Combinatorial Theory, Series A, 122 (2014) 28-38 http://arxiv.org/abs/1112.5782
G. Jenča: Congruences generated by ideals of the compatibility center of lattice effect algebras, Soft Computing, 17 (2013) 45-47
G. Jenča: Compatibility support mappings in effect algebras, Mathematica Slovaca, 62 (2012) 363-378 http://arxiv.org/abs/0910.2825
G. Jenča: Extensions of Witness Mappings, Order, 29 (2012) 533-544
G. Jenča: Coexistence in interval effect algebras, Proceedings of the American Mathematical Society, 139 (2011) 331-344 http://arxiv.org/abs/0910.2823
G. Jenča: Sharp and Meager Elements in Orthocomplete Homogeneous Effect Algebras, Order, 27 (2010) 41-61
G. Jenča: 0-homogeneous effect algebras, Soft Computing, 14 (2010) 1111-1116
A. Di Nola, M. Holčapek, G. Jenča: The category of MV-pairs, Logic Journal of the IGPL, 17 (2009) 395-412
G. Jenča: A representation theorem for MV-algebras, Soft Computing, 11 (2007) 557-564 http://arxiv.org/abs/math/0602169
G. Jenča: The block structure of complete lattice ordered effect algebras, Journal of the Australian Mathematical Society, 83 (2007) 181-216
G. Jenča: Boolean algebras R-generated by MV-effect algebras, Fuzzy Sets and Systems, 145 (2004) 279-285
G. Jenča: Finite homogeneous and lattice ordered effect algebras, Discrete Mathematics, 272 (2003) 197-214
G. Jenča, S. Pulmannová: Orthocomplete effect algebras, Proceedings of the American Mathematical Society, 131 (2003) 2663-2671
G. Jenča: A Cantor-Bernstein type theorem for effect algebras, Algebra Universalis, 48 (2002) 399-411
G. Jenča, S. Pulmannová: Quotients of partial abelian monoids and the Riesz decomposition property, Algebra Universalis, 47 (2002) 443-477
G. Jenča, I. Marinová, Z. Riečanová: Central elements, blocks and sharp elements of lattice effect algebras, , (2002) 28-33
G. Jenča, Z. Riečanová: A Survey on Sharp Elements in Unsharp Quantum Logics, Journal of Electrical Engineering, 52 (2001) 237-239
G. Jenča: Blocks of homogeneous effect algebras, Bulletin of the Australian Mathematical Society, 64 (2001) 81-98 http://arxiv.org/abs/1504.00354
G. Jenča, S. Pulmannová: Ideals and Quotients in Lattice Ordered Effect Algebras, Soft Computing, 5 (2001) 376-380
G. Jenča: Subcentral ideals in generalized effect algebras, International Journal of Theoretical Physics, 39 (2000) 745-755
G. Jenča: Notes on R1-ideals in partial abelian monoids, Algebra Universalis, 43 (2000) 307-319
G. Jenča: A note on ideals in generalized effect algebras, Tatra Mountains Mathematical Publications, 16 (1999) 81-85
G. Jenča, Z. Riečanová: On sharp elements in lattice ordered effect algebras, BUSEFAL, 80 (1999) 24-29
G. Jenča: Sheaf representations of partial abelian monoids, Journal of Electrical Engineering, 50 (1999) 66-70