
Coherent configurations as modules

Gejza Jenča, Anna Jenčová, Dominik Lachman

AAA 106, Olomouc, 2025

This research is supported by grants VEGA 2/0128/24 and 1/0036/23,

APVV-20-0069.

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



The plan

1 Coherent configurations and association schemes.
2 String diagrams and Frobenius monoids.
3 Connections between them
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Motivation: group actions on squares of sets

Let (Γ, ..e) be a group acting on a finite set X from the
right: ⊙ : X × Γ→ X such that

(x ⊙ a)⊙ b = x ⊙ (ab) x ⊙ e = x .

We may extend the action to X × X in an obvious way:

(x1, x2)⊙ a := (x1 ⊙ a, x2 ⊙ a)

Clearly, this is an action of Γ, so it induces a decomposition
of X × X into equivalence classes.
Each of these equivalence classes is a subset of X × X , that
means, a relation on the set X .
Hence we obtain data in the form (X ,S), where S is a
system of relations.
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An example

Let X = {1, . . . , 5} and consider a permutation (an action of Z)
on X like this:

1

2

3

4

5
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An example
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The orbits look like this:
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Coherent configurations

Definition

(Higman 1970) Let X be a finite set, let S be a system of
subsets of X × X such that

(C1) S is a partition of X × X .

(C2) If c ∈ S and (x , x) ∈ c , then c is a subset of the identity
relation idX . The elements e ∈ S with e ⊆ idX are called
units. The set of all units is denoted by ES .

(C3) For a, b, c ∈ S and (x , y) ∈ c , the number ∇c
ab of z ∈ X

such that (x , z) ∈ a and (z , y) ∈ b does not depend on the
choice of (x , y) ∈ c .

(C4) If c ∈ S , then c−1 = {(y , x) : (x , y) ∈ c} ∈ S

Then (X ,S) is called a coherent configuration on X .
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An illustration of (C3)
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Over every • edge (x , y), there are exactly 2 •-• walks from x to
y , for example (x , y) = (1, 2):

1
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3

4

5

1
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4

5

That means, ∇••• = 2

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



An illustration of (C3)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Over every • edge (x , y), there are exactly 2 •-• walks from x to
y , for example (x , y) = (1, 2):

1

2

3

4

5

1

2

3

4

5

That means, ∇••• = 2

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



Sources and targets of colors

For every color a ∈ S , there is exactly one unit p ∈ ES such
that ∇p

ab > 0.

In this case, b = a−1.

This p is called the target of a and is denoted by t(a).

The source of a is defined analogously and denoted by s(a).

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



Sources and target colors in our example
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color • • • • • • •
source • • • • • • •
target • • • • • • •
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Valencies

The valency of a color a is the number

∥a∥ = ∇s(a)
aa−1

It is easy to see that whenever x is a vertex such that there is
(x , y) ∈ a, ∥a∥ is the number of a-colored edges sourced at a.
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Valencies in our example
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∥•∥ = ∇•••−1 = ∇••• = 2

color • • • • • • •
valency 2 3 1 1 1 1 1
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Association schemes

Definition

An association scheme is a coherent configuration (X ,S) such
that the identity relation

idX = {(x , x) : x ∈ X}

belong to S .

In other words, all the loops are of the same color.
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Examples of association schemes

It is sometimes simpler to introduce in terms of of a coloring:
take a surjective mapping

X × X → S .

and then identify the relations with the fibers of the mapping.

Example (Hamming scheme)

Let X = 2{1,2,...,n}, let S = {0, . . . , n} color the edge
(x , y) ∈ X × X by the number of elements in the symmetric
difference (x \ y) ∪ (y \ x).

Example (Johnson scheme)

Restrict the Hamming scheme to k-element subsets.

Example (Group scheme)

Let G be a group, let X = G , color the edge (x , y) ∈ G × G by
the conjugacy class of xy−1.
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Books on association schemes

Bailey Zieshang Bark and Litsyn (eds.)
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A book on coherent configurations

Chen,G. and Ponomarenko, I.:Lectures on Coherent
Configurations, https://pdmi.ras.ru/~inp/ccNOTES.pdf
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Monoidal categories

A monoidal category category is a category C equipped with

a functor ⊗ : C × C → C,
a chosen unit object I (behaving neutrally with respect to ⊗)

natural isomorphisms α, λ, ρ,

satisfying several conditions.
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Monoidal categories
Examples of monoidal categories

(Set,×, 1) - sets with direct product and a singleton set.

(Ab,⊗,Z) - abelian groups with tensor product and Z.

(FinHilb,⊗,C) - finitely dimensional Hilbert spaces with
tensor product and C.

(Sup,⊗, 2) - complete join semilattices, tensor product and
the 2-chain.

(Rel,⊗, 1) - sets with direct product and a singleton set, but
the morphisms are relations and not mappings.
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String diagrams – motivation

Suppose that we have a category C, equipped with a
monoidal structure (C,⊗, I , α, λ, ρ).
This means that we have several complicated commutative
diagrams (see MacLane) involving ⊗ and natural
transformations, like
((A⊗ B)⊗ C )⊗D

αA⊗B,C ,D

��

αA,B,C⊗idD// (A⊗ (B ⊗ C ))⊗D
αA,B⊗C ,D // A⊗ ((B ⊗ C )⊗D)

idA⊗αB,C ,D
��

(A⊗ B)⊗ (C ⊗D) αA,B,C⊗D
// A⊗ (B ⊗ (C ⊗D))
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String diagrams – motivation

The commutative diagrams are equations

, but

αA,B,C⊗D◦αA⊗B,C ,D = idA⊗αB,C ,D◦αA,B⊗C ,D◦αA,B,C⊗idD

is even worse.

We may choose to pretend that (A⊗ B)⊗ C = A⊗ (B ⊗ C )
(strictification) but this does not solve everything:

We still have do deal with trivial commutative diagrams like

A⊗ B
f⊗idB //

idA⊗g
��

C ⊗ B

idC⊗g
��

A⊗D
f⊗idD

// C ⊗D
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String diagrams – motivation

String diagrams (in our context) are a way how to denote a
morphism in a monoidal category by a picture so that

the trivial equalities become real equalities,

or, at the vary least, can be represented by

simple and intuitive deformations of one picture into another one.
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String diagrams – motivation

The goal is rather mundane, but very useful:
we want to simplify computations.

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



String diagrams
Objects, identities

A = A = idA
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String diagrams
Morphisms

(f : A→ B) = f

A

B
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String diagrams
Composition of morphisms

A f // B
g // C =

f

g

A

B

C
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String diagrams
Tensor product of objects

A⊗ B = A B

A⊗ (B ⊗ C ) = (A⊗ B)⊗ C = A B C
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String diagrams
The identity object

I =

A⊗ I = I ⊗ A = A = A
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String diagrams
States and effects

I
φ // A =

φ

A

A
χ // I =

χ

A
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String diagrams
Tensor product of morphisms

A⊗ C
f⊗g // B ⊗D = f g

A C

B D
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String diagrams
Tensor product is functorial

(f2 ⊗ g2) ◦ (f1 ⊗ g1) = (f2 ◦ f1)⊗ (g2 ◦ g1)

f1

f2

g1

g2
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String diagrams
Sliding

(g ⊗ idE ) ◦ (f ⊗ h) = (g ⊗ idE ) ◦ (idB ⊗ h) ◦ (f ⊗ idD) =

(g ⊗ h) ◦ (f ⊗ idD)

f

g

h

A

B

C

D

E

=

f

g

h

A

B

C

D

E

=

f

g h

A

B

C

D

E
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String diagrams
(Co)operations

A⊗ A ∇ // A = ∇
A A

A

=

A ∆ // A⊗ A = ∆

A

A A
=
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Monoids
Without string diagrams

Definition

Let (C,⊗, I ) be a monoidal category. A monoid in C is a triple
(S ,∇, e), where S is an object of C, e : I → S and
∇ : S ⊗ S → S such that the equations

∇ ◦ (e ⊗ idS) = λS

∇ ◦ (idS ⊗ e) = ρS
∇ ◦ (∇⊗ idS) = ∇ ◦ (idS ⊗∇)

are satisfied.
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Monoids
With string diagrams

e

∇ = =

e

∇

∇

∇
=

∇

∇
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Monoids
With string diagrams

= =

=
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Examples of monoids

Monoids in (Set,×, 1) are just the usual monoids.

Monoids in (Ab,⊗,Z) are rings.

Monoids in (VectK ,⊗,K ) are algebras.

Monoids in (Sup,⊗, 2) are quantales.
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Comonoids

= =

=
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Comonoids in (Set,×, 1) ?!

They exist, but are very rare.

∆

c

S

S
S

= S = ∆

c

S

S
S

This already implies that

∆(a) = (a, a)

and it turns out that this ∆ is coassociative.
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Modules

Let (S ,∇, e) be a monoid, let X be an object, let

X ⊗ S
γ // X

We say that γ is an S-module if

γ ◦ (γ ⊗ idS) = γ ◦ (idX ⊗∇) γ ◦ (idX ⊗ e) = λX

are satisfied. In string diagrams, this is expressed by

X S

X

S

X

=

S S

S

X

X

S

X

X

= X

where the gray dot represents the γ.
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Frobenius monoids

A Frobenius monoid S is a structure

(S ,∇,∆, e, c)

such that

(S ,∇, e) is a monoid

(S ,∆, c) is a comonoid

(∇⊗ idS) ◦ (idS ⊗∆) = ∆ ◦ ∇ = (idS ⊗∇) ◦ (∆⊗ idS)
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Frobenius monoids

(∇⊗ idS) ◦ (idS ⊗∆) = ∆ ◦ ∇ = (idS ⊗∇) ◦ (∆⊗ idS)

= =
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Many examples of Frobenius monoids

Every cohomology ring is a Frobenius monoid in the category
of abelian groups with ⊗.

Every finite dimensional C ∗-algebra is a Frobenius monoid in
the category of finitely dimensional Hilbert spaces with ⊗.

Every small groupoid is a Frobenius monoid in the category
of sets and relations with ×.

Every Lambek pregroup is a Frobenius monoid in the
category of posets and monotone relations with ×.

Every effect algebra is a Frobenius monoid in the same
category.

Every Frobenius monoid in (Set,×, 1) is trivial (singleton).
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The string diagrams book we use

Heunen, C. and Vicary, J., 2019. Categories for Quantum
Theory: an introduction. Oxford University Press.
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A page from that book

6.1 Complementary Structures | 197

A⊗A

A⊗AA⊗A

=

A

AA A

A

A

A⊗A

=

A A

Then a straightforward graphical calculation shows the following:

= = =

The other identity in (6.4) follows similarly. �

Combined with Theorem 5.15, the previous lemma says that any dagger Frobenius
structure on A gives rise to a complementary pair of Frobenius structures on A⊗A in
any braided monoidal dagger category.

6.1.2 Dagger Complementarity

Complementarity is an equality of morphisms built from the (co)multiplication and
(co)unit of a Frobenius structure. We can also characterize complementarity in terms of
daggers, namely as some canonical morphism being unitary.

Proposition 6.7. In a braided monoidal dagger category, two symmetric dagger Frobenius
structures are complementary if and only if any, and hence all, of the following endomorphisms
are unitary:
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The category of nonnegative matrices

The category MatR+
0

is the category whose

objects are finite sets and

morphisms from a set X to a set Y are matrices of elements
of R+

0 = {x ∈ R : x ≤ 0} with columns indexed by the set X
and rows indexed by the set Y .

For f : X → Y , we denote the element of the matrix
corresponding to a pair x ∈ X , y ∈ Y by f y

x .

The composition of morphisms is the usual matrix
multiplication: for f : A→ B and g : B → C , we have

(g ◦ f )ca =
∑
b∈B

f b
a gc

b .

and the identity morphism idA : A→ A is the unit matrix.
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This is not linear algebra

Proposition
In MatR+

0
, f : A→ B is an isomorphism iff for every a ∈ A there

is a unique b ∈ B such that f b
a > 0 and for every b ∈ B there is a

unique a ∈ A such that f b
a > 0.

In other words, if we want to construct all isomorphisms in
MatR+

0
, we may simply take all permutation matrices and replace

1 in the matrix by some arbitrary positive real number.
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Tensor products

There is a symmetric monoidal structure (MatR+
0
,⊗, I ):

I is a one-element set (we write I := {∗}),
for finite sets X ,Y , X ⊗ Y := X × Y ,

for morphisms f : A→ B and g : C → D,
f1 ⊗ f2 : A⊗ C → B ⊗D is the tensor (or Kronecker)
product of matrices:

(f ⊗ g)bd
ac = f b

a .g
d
c
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MatR+
0

is a dagger compact category

There is additional structure on MatR+
0
:

For every morphism f : A→ B there is a morphism
f † : B → A (the transpose of the matrix f ).
For every object A there is

a dual object A∗ (we may take A = A∗),
a morphism ηA : I → A∗ ⊗ A,
a morphism εA : A⊗ A∗ → I ,

subject to several conditions.

MatR+
0

is a dagger compact category.

Other examples: FinHilb, Rel, RelPosInv, ...
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String diagrams in dagger compact categories

If we have a dagger compact category,
we are allowed to do additional transformations on string
diagrams:

bending strings
straightening strings
turning things upside down.
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Snake equations

ηA = A∗ A
εA =

A A∗

A

A∗

A

= A

A∗

A

A∗

= A∗
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Back to coherent configurations

Let X be a finite set, let S be a set of relations on X that is a
partition of X × X . We may encode the data into a 0, 1 matrix γ
such that

columns are indexed by X ⊗ S

rows are indexed by X

the values are given by the rule

γy
xa =

{
1 if (x , y) ∈ a

0 otherwise
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An example

x y

γ (•,x) (•,y) (•,x) (•,y)
x 0 1 1 0
y 1 0 0 1

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules



A natural question

The matrix γ is a morphism in MatR+
0

X ⊗ S
γ // X

It has a "datatype" of an S-module over X .

For which (X ,S) is there a monoid (S ,∇, e) such that
γ : X ⊗ S → X is an S-module?
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X S

X

S

X

=

S S

S

X

X

means that

(C3) For a, b, c ∈ S and (x , y) ∈ c , the number ∇c
ab of z ∈ X

such that (x , z) ∈ a and (z , y) ∈ b does not depend on the
choice of (x , y) ∈ c .
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S

X

X

= X

means that

(C2) If c ∈ S and (x , x) ∈ c , then c is a subset of the identity
relation idX .
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Main result part 1

But these are exactly the axioms of a coherent configuration!

Theorem
Let X be a finite set, let S be a partition of X × X, so that
(X ,S) satisfies (C1). Let γ : X ⊗ S → X be the
MatR+

0
-morphism associated with (X ,S). Then γ is a module

over some pointed magma (S ,∇, e) if and only if (X ,S) satisfies
(C2) and (C3) of the definition of a coherent
configuration.

Moreover, (S ,∇, e) is then a monoid.
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Example

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

One column in the matrix ∇:

∇ ••
• 0
• 0
• 2
• 2
• 0
• 2
• 0
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A snippet of the proof

The associative law in MatR+
0

for a binary operation ∇ on S
means that, for all a, b, c , d ∈ S ,∑

p∈S

∇d
pc∇

p
ab =

∑
q∈S

∇d
aq∇

q
bc .

For a coherent configuration, this has a combinatorial meaning

· b // ·
c
��

x

a

OO
p

??

d
// y

· b //

q

��

·
c
��

x

a

OO

d
// y
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A snippet of the proof

So two sides of the associative equality just count the number of
the squares

· b // ·
c
��

x

a

OO

d
// y

in two different ways.
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Main result part 2

What about the

(C4) If c ∈ S , then c−1 = {(y , x) : (x , y) ∈ c} ∈ S?

It turns out that it exactly encodes the fact that (S ,∇, e) is a
monoid part of a Frobenius monoid with c = e†:

Theorem

Let (X ,S) be a pair of finite sets satisfying (CC1)-(CC3). Then
e† is a counit of some Frobenius monoid (S ,∇, e,∆, e†) if and
only if (X ,S) is a coherent configuration.
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Coassociativity of ∆ means something

The comultiplication ∆: S → S ⊗ S is given by

∆bc
a =

1
∥b−1∥∇

c
b−1a

The fact that this is coassociative has a combinatorial
interpretation.
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Some additional axioms

There are subclasses of Frobenius monoids. What are their
corresponding subclasses of coherent configurations?

The "extra" axiom is e ◦ e† = idI .

=

These are exactly the association schemes.

The "symmetric" axiom is

=

This means that ∥a∥ = ∥a−1∥, for every a ∈ S .
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Some additional axioms

The "special" axiom is ∇ ◦∆ = idS

=

This means that ∥a∥ = 1 for every a ∈ S (thin coherent
configurations).
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Nakayama automorphism

Every Frobenius monoid S in a compact category has a
special automorphism uniquely determined by the property

=

α

In our case, α : S → S is a diagonal matrix

αb
a =

{ ∥a∥
∥a−1∥ a = b

0 otherwise

The fact that α is an automorphism means that

∥c∥
∥a∥.∥b∥ =

∥c−1∥
∥a−1∥.∥b−1∥

whenever ∇c
ab > 0.
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Dagger Frobenius monoids

These are Frobenius monoids satisfying

c = e† ∆ = ∇†

In our case, we have c = e†, but not the other property.

Can we "daggerize" our Frobenius monoids?

We will see after the break...
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Thank you for your attention.
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