Coherent configurations as modules

Gejza Jenča, Anna Jenčová, Dominik Lachman

AAA 106, Olomouc, 2025

This research is supported by grants VEGA 2/0128/24 and 1/0036/23, APVV-20-0069.

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

(日) (同) (日) (日)

- Oherent configurations and association schemes.
- String diagrams and Frobenius monoids.
- Onnections between them

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (Γ, ..e) be a group acting on a finite set X from the right: ⊙: X × Γ → X such that

$$(x \odot a) \odot b = x \odot (ab)$$
 $x \odot e = x$.

< 回 > < 三 > < 三 >

Let (Γ, ..e) be a group acting on a finite set X from the right: ⊙: X × Γ → X such that

$$(x \odot a) \odot b = x \odot (ab)$$
 $x \odot e = x$.

• We may extend the action to $X \times X$ in an obvious way:

$$(x_1, x_2) \odot a := (x_1 \odot a, x_2 \odot a)$$

• (10) • (10)

Let (Γ, ..e) be a group acting on a finite set X from the right: ⊙: X × Γ → X such that

$$(x \odot a) \odot b = x \odot (ab)$$
 $x \odot e = x$.

• We may extend the action to $X \times X$ in an obvious way:

$$(x_1, x_2) \odot a := (x_1 \odot a, x_2 \odot a)$$

 Clearly, this is an action of Γ, so it induces a decomposition of X × X into equivalence classes.

< 同 > < 三 > < 三 >

Let (Γ, ..e) be a group acting on a finite set X from the right: ⊙: X × Γ → X such that

$$(x \odot a) \odot b = x \odot (ab)$$
 $x \odot e = x.$

• We may extend the action to $X \times X$ in an obvious way:

$$(x_1, x_2) \odot a := (x_1 \odot a, x_2 \odot a)$$

- Clearly, this is an action of Γ, so it induces a decomposition of X × X into equivalence classes.
- Each of these equivalence classes is a subset of $X \times X$, that means, a relation on the set X.

< 回 > < 三 > < 三 >

Let (Γ, ..e) be a group acting on a finite set X from the right: ⊙: X × Γ → X such that

$$(x \odot a) \odot b = x \odot (ab)$$
 $x \odot e = x$.

• We may extend the action to $X \times X$ in an obvious way:

$$(x_1, x_2) \odot a := (x_1 \odot a, x_2 \odot a)$$

- Clearly, this is an action of Γ , so it induces a decomposition of $X \times X$ into equivalence classes.
- Each of these equivalence classes is a subset of $X \times X$, that means, a relation on the set X.
- Hence we obtain data in the form (*X*, *S*), where *S* is a system of relations.

Let $X = \{1, ..., 5\}$ and consider a permutation (an action of \mathbb{Z}) on X like this:

(a)

An example

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

・ロン ・回 と ・ ヨ と ・ ヨ と

Ξ.

An example

The orbits look like this:

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

Definition

(Higman 1970) Let X be a finite set, let S be a system of subsets of $X \times X$ such that

- (C1) S is a partition of $X \times X$.
- (C2) If $c \in S$ and $(x, x) \in c$, then c is a subset of the identity relation id_X . The elements $e \in S$ with $e \subseteq id_X$ are called *units*. The set of all units is denoted by E_S .
- (C3) For $a, b, c \in S$ and $(x, y) \in c$, the number ∇_{ab}^c of $z \in X$ such that $(x, z) \in a$ and $(z, y) \in b$ does not depend on the choice of $(x, y) \in c$.

(C4) If
$$c \in S$$
, then $c^{-1} = \{(y, x) : (x, y) \in c\} \in S$

Then (X, S) is called a coherent configuration on X.

< ロ > < 同 > < 三 > < 三 >

An illustration of (C3)

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

<ロト <回ト < 三ト < 三ト

2

An illustration of (C3)

Over every • edge (x, y), there are exactly 2 •-• walks from x to y, for example (x, y) = (1, 2):

That means, $\nabla_{\bullet} = 2$

- For every color a ∈ S, there is exactly one unit p ∈ E_S such that ∇^p_{ab} > 0.
- In this case, $b = a^{-1}$.
- This p is called the target of a and is denoted by t(a).
- The source of a is defined analogously and denoted by s(a).

< 同 > < 三 > < 三 >

Sources and target colors in our example

< 回 > < 三 > < 三 >

э

• The valency of a color *a* is the number

$$\|a\| = \nabla_{aa^{-1}}^{s(a)}$$

It is easy to see that whenever x is a vertex such that there is
(x, y) ∈ a, ||a|| is the number of a-colored edges sourced at a.

< 同 > < 三 > < 三 >

Valencies in our example

(a)

э

Definition

An association scheme is a coherent configuration (X, S) such that the identity relation

$$\mathrm{id}_X = \{(x, x) : x \in X\}$$

belong to S.

In other words, all the loops are of the same color.

< 回 > < 三 > < 三 >

Examples of association schemes

It is sometimes simpler to introduce in terms of of a coloring: take a surjective mapping

 $X \times X \rightarrow S$.

and then identify the relations with the fibers of the mapping.

Example (Hamming scheme)

Let $X = 2^{\{1,2,\dots,n\}}$, let $S = \{0,\dots,n\}$ color the edge $(x, y) \in X \times X$ by the number of elements in the symmetric difference $(x \setminus y) \cup (y \setminus x)$.

Example (Johnson scheme)

Restrict the Hamming scheme to *k*-element subsets.

Example (Group scheme)

Let G be a group, let X = G, color the edge $(x, y) \in G \times G$ by the conjugacy class of xy^{-1} .

Books on association schemes

イロン イ団 と イヨン イヨン

2

Chen,G. and Ponomarenko, I.:Lectures on Coherent Configurations, https://pdmi.ras.ru/~inp/ccNOTES.pdf

通 ト イ ヨ ト イ ヨ ト

A monoidal category category is a category $\ensuremath{\mathcal{C}}$ equipped with

- a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$,
- a chosen unit object / (behaving neutrally with respect to \otimes)
- natural isomorphisms α , λ , ρ ,
- satisfying several conditions.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- (Set, \times , 1) sets with direct product and a singleton set.
- $(Ab, \otimes, \mathbb{Z})$ abelian groups with tensor product and \mathbb{Z} .
- (FinHilb, ⊗, ℂ) finitely dimensional Hilbert spaces with tensor product and ℂ.
- (Sup, ⊗, 2) complete join semilattices, tensor product and the 2-chain.
- (**Rel**, ⊗, 1) sets with direct product and a singleton set, but the morphisms are relations and not mappings.

- 4 同 ト 4 三 ト 4 三 ト

- Suppose that we have a category C, equipped with a monoidal structure (C, ⊗, I, α, λ, ρ).
- This means that we have several complicated commutative diagrams (see MacLane) involving ⊗ and natural transformations, like

< 回 > < 三 > < 三 >

String diagrams – motivation

• The commutative diagrams are equations

String diagrams – motivation

• The commutative diagrams are equations, but

 $\alpha_{A,B,C\otimes D} \circ \alpha_{A\otimes B,C,D} = \mathrm{id}_A \otimes \alpha_{B,C,D} \circ \alpha_{A,B\otimes C,D} \circ \alpha_{A,B,C} \otimes \mathrm{id}_D$

is even worse.

- We may choose to pretend that (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) (strictification) but this does not solve everything:
- We still have do deal with trivial commutative diagrams like

< 回 > < 三 > < 三 >

String diagrams (in our context) are a way how to denote a morphism in a monoidal category by a picture so that

the trivial equalities become real equalities,

or, at the vary least, can be represented by

simple and intuitive deformations of one picture into another one.

< 回 > < 三 > < 三 >

The goal is rather mundane, but very useful: we want to simplify computations.

< ロ > < 同 > < 三 > < 三 >

$$A = A = \operatorname{id}_A$$

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

・ロト ・四ト ・ヨト ・ヨト

2

$$(f: A \to B) = \oint_{A \uparrow} A$$

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

・ロト ・回ト ・ヨト ・ヨト

Ξ.

String diagrams Composition of morphisms

(a)

э

String diagrams Tensor product of objects

$$A \otimes B = A \qquad \qquad \Rightarrow B$$
$$A \otimes (B \otimes C) = (A \otimes B) \otimes C = A \qquad \qquad \Rightarrow B \qquad \qquad \Rightarrow C$$

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

・ロト ・四ト ・ヨト ・ヨト

2

String diagrams The identity object

$$I = A \otimes I = I \otimes A = A = A$$

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

イロン イロン イヨン イヨン

2

String diagrams States and effects

(a)

String diagrams Tensor product of morphisms

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

イロト イボト イヨト イヨト

$(f_2 \otimes g_2) \circ (f_1 \otimes g_1) = (f_2 \circ f_1) \otimes (g_2 \circ g_1)$

< 回 > < 三 > < 三 >

э
$\begin{array}{l} (g \otimes \mathrm{id}_E) \circ (f \otimes h) = (g \otimes \mathrm{id}_E) \circ (\mathrm{id}_B \otimes h) \circ (f \otimes \mathrm{id}_D) = \\ (g \otimes h) \circ (f \otimes \mathrm{id}_D) \end{array}$

< 回 > < 三 > < 三 >

э

String diagrams (Co)operations

Definition

Let $(\mathcal{C}, \otimes, I)$ be a monoidal category. A *monoid* in \mathcal{C} is a triple (S, ∇, e) , where S is an object of \mathcal{C} , $e: I \to S$ and $\nabla: S \otimes S \to S$ such that the equations

$$\nabla \circ (e \otimes \mathrm{id}_S) = \lambda_S$$
$$\nabla \circ (\mathrm{id}_S \otimes e) = \rho_S$$
$$\nabla \circ (\nabla \otimes \mathrm{id}_S) = \nabla \circ (\mathrm{id}_S \otimes \nabla)$$

are satisfied.

< ロ > < 同 > < 回 > < 回 > .

Monoids With string diagrams

・ロト ・回ト ・ヨト ・ヨト

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

- Monoids in $(Set, \times, 1)$ are just the usual monoids.
- Monoids in $(Ab, \otimes, \mathbb{Z})$ are rings.
- Monoids in (**Vect**_K, \otimes , K) are algebras.
- Monoids in $(Sup, \otimes, 2)$ are quantales.

Comonoids

イロン イ団 と イヨン イヨン

Comonoids in $(Set, \times, 1)$?!

They exist, but are very rare.

(a)

æ

They exist, but are very rare.

This already implies that

$$\Delta(a) = (a, a)$$

and it turns out that this Δ is coassociative.

Modules

Let (S, ∇, e) be a monoid, let X be an object, let

$$X \otimes S \xrightarrow{\gamma} X$$

We say that γ is an S-module if

$$\gamma \circ (\gamma \otimes \mathrm{id}_S) = \gamma \circ (\mathrm{id}_X \otimes \nabla) \qquad \gamma \circ (\mathrm{id}_X \otimes e) = \lambda_X$$

are satisfied. In string diagrams, this is expressed by

A Frobenius monoid S is a structure

$$(S, \nabla, \Delta, e, c)$$

such that

- (S, ∇, e) is a monoid
- (S, Δ, c) is a comonoid
- $(\nabla \otimes \mathrm{id}_{\mathcal{S}}) \circ (\mathrm{id}_{\mathcal{S}} \otimes \Delta) = \Delta \circ \nabla = (\mathrm{id}_{\mathcal{S}} \otimes \nabla) \circ (\Delta \otimes \mathrm{id}_{\mathcal{S}})$

通 ト イ ヨ ト イ ヨ ト

- Every cohomology ring is a Frobenius monoid in the category of abelian groups with $\otimes.$
- Every finite dimensional *C**-algebra is a Frobenius monoid in the category of finitely dimensional Hilbert spaces with ⊗.
- Every small groupoid is a Frobenius monoid in the category of sets and relations with ×.
- Every Lambek pregroup is a Frobenius monoid in the category of posets and monotone relations with ×.
- Every effect algebra is a Frobenius monoid in the same category.
- Every Frobenius monoid in (**Set**, ×, 1) is trivial (singleton).

The string diagrams book we use

Heunen, C. and Vicary, J., 2019. *Categories for Quantum Theory: an introduction*. Oxford University Press.

< ロ > < 同 > < 三 > < 三 >

The category of nonnegative matrices

The category $\boldsymbol{\mathsf{Mat}}_{\mathbb{R}^+_n}$ is the category whose

- objects are finite sets and
- morphisms from a set X to a set Y are matrices of elements of ℝ₀⁺ = {x ∈ ℝ : x ≤ 0} with columns indexed by the set X and rows indexed by the set Y.
- For f : X → Y, we denote the element of the matrix corresponding to a pair x ∈ X, y ∈ Y by f_x^y.
- The composition of morphisms is the usual matrix multiplication: for *f* : *A* → *B* and *g* : *B* → *C*, we have

$$(g \circ f)^c_a = \sum_{b \in B} f^b_a g^c_b.$$

< ロ > < 同 > < 三 > < 三 >

• and the identity morphism $id_A \colon A \to A$ is the unit matrix.

Proposition

In $\operatorname{Mat}_{\mathbb{R}^+_0}$, $f: A \to B$ is an isomorphism iff for every $a \in A$ there is a unique $b \in B$ such that $f_a^b > 0$ and for every $b \in B$ there is a unique $a \in A$ such that $f_a^b > 0$.

In other words, if we want to construct all isomorphisms in $\textbf{Mat}_{\mathbb{R}^+_0}$, we may simply take all permutation matrices and replace 1 in the matrix by some arbitrary positive real number.

There is a symmetric monoidal structure ($Mat_{\mathbb{R}^+_0}, \otimes, I$):

- *I* is a one-element set (we write *I* := {*}),
- for finite sets X, Y, $X \otimes Y := X \times Y$,
- for morphisms f : A → B and g : C → D,
 f₁ ⊗ f₂ : A ⊗ C → B ⊗ D is the tensor (or Kronecker) product of matrices:

$$(f\otimes g)_{ac}^{bd}=f_a^b.g_c^d$$

There is additional structure on $Mat_{\mathbb{R}^+_0}$:

- For every morphism $f: A \rightarrow B$ there is a morphism $f^{\dagger}: B \rightarrow A$ (the transpose of the matrix f).
- For every object A there is
 - a dual object A^* (we may take $A = A^*$),
 - a morphism $\eta_A \colon I \to A^* \otimes A$,
 - a morphism $\varepsilon_A \colon A \otimes A^* \to I$,

subject to several conditions.

- $Mat_{\mathbb{R}^+_{0}}$ is a dagger compact category.
- Other examples: FinHilb, Rel, RelPosInv, ...

- If we have a dagger compact category,
- we are allowed to do additional transformations on string diagrams:
 - bending strings
 - straightening strings
 - turning things upside down.

Snake equations

< ロ > < 同 > < 三 > < 三 >

Let X be a finite set, let S be a set of relations on X that is a partition of $X \times X$. We may encode the data into a 0, 1 matrix γ such that

- columns are indexed by $X \otimes S$
- rows are indexed by X
- the values are given by the rule

$$\gamma_{xa}^{y} = egin{cases} 1 & ext{if } (x,y) \in a \ 0 & ext{otherwise} \end{cases}$$

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

イロン イ団 と イヨン イヨン

Ξ.

• The matrix γ is a morphism in $\operatorname{Mat}_{\mathbb{R}^+_0}$

$$X \otimes S \xrightarrow{\gamma} X$$

- It has a "datatype" of an *S*-module over *X*.
- For which (X, S) is there a monoid (S, ∇, e) such that $\gamma : X \otimes S \to X$ is an S-module?

means that

(C3) For a, b, $c \in S$ and $(x, y) \in c$, the number ∇_{ab}^c of $z \in X$ such that $(x, z) \in a$ and $(z, y) \in b$ does not depend on the choice of $(x, y) \in c$.

< ∃ >

means that

(C2) If $c \in S$ and $(x, x) \in c$, then c is a subset of the identity relation id_X .

- E

But these are exactly the axioms of a coherent configuration!

Theorem

Let X be a finite set, let S be a partition of $X \times X$, so that (X, S) satisfies (C1). Let $\gamma \colon X \otimes S \to X$ be the **Mat**_{\mathbb{R}^+_0}-morphism associated with (X, S). Then γ is a module over some pointed magma (S, ∇, e) if and only if (X, S) satisfies (C2) and (C3) of the definition of a coherent configuration.

・ 同 ト ・ ヨ ト ・ ヨ ト

But these are exactly the axioms of a coherent configuration!

Theorem

Let X be a finite set, let S be a partition of $X \times X$, so that (X, S) satisfies (C1). Let $\gamma : X \otimes S \to X$ be the **Mat**_{\mathbb{R}_0^+}-morphism associated with (X, S). Then γ is a module over some pointed magma (S, ∇ , e) if and only if (X, S) satisfies (C2) and (C3) of the definition of a coherent configuration.Moreover, (S, ∇ , e) is then a monoid.

Example

The associative law in $\operatorname{Mat}_{\mathbb{R}^+_0}$ for a binary operation ∇ on S means that, for all $a, b, c, d \in S$,

$$\sum_{p \in S} \nabla^d_{pc} \nabla^p_{ab} = \sum_{q \in S} \nabla^d_{aq} \nabla^q_{bc}.$$

(a)

The associative law in $\operatorname{Mat}_{\mathbb{R}^+_0}$ for a binary operation ∇ on S means that, for all $a, b, c, d \in S$,

$$\sum_{p \in S} \nabla^d_{pc} \nabla^p_{ab} = \sum_{q \in S} \nabla^d_{aq} \nabla^q_{bc}.$$

For a coherent configuration, this has a combinatorial meaning

通 ト イ ヨ ト イ ヨ ト

So two sides of the associative equality just count the number of the squares

in two different ways.

.∋...>

What about the

(C4) If $c \in S$, then $c^{-1} = \{(y, x) : (x, y) \in c\} \in S$?

Gejza Jenča, Anna Jenčová, Dominik Lachman Coherent configurations as modules

イロト イボト イヨト イヨト

What about the

(C4) If
$$c \in S$$
, then $c^{-1} = \{(y, x) : (x, y) \in c\} \in S$?

It turns out that it exactly encodes the fact that (S, ∇, e) is a monoid part of a Frobenius monoid with $c = e^{\dagger}$:

Theorem

Let (X, S) be a pair of finite sets satisfying (CC1)-(CC3). Then e^{\dagger} is a counit of some Frobenius monoid $(S, \nabla, e, \Delta, e^{\dagger})$ if and only if (X, S) is a coherent configuration.

通 ト イ ヨ ト イ ヨ ト

The comultiplication $\Delta \colon S \to S \otimes S$ is given by

$$\Delta_{a}^{bc} = \frac{1}{\|b^{-1}\|} \nabla_{b^{-1}a}^{c}$$

The fact that this is coassociative has a combinatorial interpretation.

There are subclasses of Frobenius monoids. What are their corresponding subclasses of coherent configurations?

• The "extra" axiom is $e \circ e^{\dagger} = id_I$.

$$\left| \begin{array}{c} \bullet \\ \bullet \end{array} \right| =$$

く 同 ト く ヨ ト く ヨ ト 一
There are subclasses of Frobenius monoids. What are their corresponding subclasses of coherent configurations?

• The "extra" axiom is $e \circ e^{\dagger} = \mathrm{id}_{I}$.

- These are exactly the association schemes.
- The "symmetric" axiom is

There are subclasses of Frobenius monoids. What are their corresponding subclasses of coherent configurations?

• The "extra" axiom is $e \circ e^{\dagger} = \mathrm{id}_{I}$.

- These are exactly the association schemes.
- The "symmetric" axiom is

• This means that $||a|| = ||a^{-1}||$, for every $a \in S$.

• The "special" axiom is $\nabla \circ \Delta = \mathrm{id}_S$

(日) (同) (日) (日)

 \bullet The "special" axiom is $\nabla\circ\Delta=\mathrm{id}_\mathcal{S}$

• This means that ||a|| = 1 for every $a \in S$ (thin coherent configurations).

Nakayama automorphism

• Every Frobenius monoid *S* in a compact category has a special automorphism uniquely determined by the property

• In our case, $\alpha \colon S \to S$ is a diagonal matrix

$$\alpha_a^b = \begin{cases} \frac{\|a\|}{\|a^{-1}\|} & a = b\\ 0 & \text{otherwise} \end{cases}$$

 $\bullet\,$ The fact that α is an automorphism means that

$$\frac{\|c\|}{\|a\|.\|b\|} = \frac{\|c^{-1}\|}{\|a^{-1}\|.\|b^{-1}\|}$$

whenever $\nabla_{ab}^c > 0$.

• These are Frobenius monoids satisfying

$$c=e^{\dagger}\quad \Delta=
abla^{\dagger}$$

- In our case, we have $c = e^{\dagger}$, but not the other property.
- Can we "daggerize" our Frobenius monoids?
- We will see after the break...

Thank you for your attention.

イロン 不同 とくほと 不良 とう

2