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Abstract

This paper proves the existence of a chiral map with alternating automorphism group
for every hyperbolic type. Equivalently, for every pair of natural numbers (m,n) such that
1/m+1/n < 1/2, there is a finite alternating group generated by a pair of elements whose
orders are m and n and whose product is an involution, where furthermore the group does
not have an automorphism which inverts these generators. We call on previously known
results for when both the valency n and the face-length m are odd, and present a set of
new constructions using permutations for when at least one parameter is even.

1 Introduction and context

A map is a cellular embedding of a connected graph on a surface such that the complement of
the image of the graph is a disjoint union of regions each of which is homeomorphic to an open
disc. Each directed edge of a map is known as an arc. An orientation-preserving automor-
phism of a map is an incidence-preserving bijection of the arc set to itself which respects the
orientation of the underlying orientable surface. A map on such a surface is orientably-regular
when the group of orientation-preserving map automorphisms acts regularly on the set of
arcs. This paper concerns chiral maps which are orientably-regular, and hence demonstrate
as much rotational symmetry as possible, and at the same time lack reflective symmetry.

Up to isomorphism, (finite) orientably-regular maps are equivalent to (finite) groups with
presentation in the form of two generators whose product is an involution, as follows. For a
given orientably-regular map M, let r and s be the automorphisms which act respectively
and locally as natural ‘one-step’ rotations around a given face F and incident vertex v, as
shown acting on the arc labelled a in Figure 1.
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Figure 1: The action of r and s on the arc labelled a in an orientably-regular map
M(G; r, s) of type {6, 3}
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The group G = ⟨r, s⟩ then acts transitively on the arcs of M and has presentation of
the form ⟨r, s | rm, sn, (rs)2, . . . ⟩. Such a map is denoted M(G; r, s) where each face is an
m-gon and each vertex has valency n, and so using Schäfli notation the map M has type
{m,n}. In each case the group G is a quotient of the corresponding (2,m, n)-triangle group
⟨R,S | Rm, Sn, (RS)2⟩. This group is the automorphism group of the tesselation of a simply-
connected surface by regular m-gons, n of which meet at each vertex. When 1/m+1/n < 1/2
the type {m,n} is hyperbolic since the corresponding (infinite) tesselation is supported by the
hyperbolic plane.

Interest in symmetric solids and in particular vertex-transitive polyhedra, each one of
which corresponds to a map with abundant symmetry, can be traced through the centuries
from the work of Plato and Archimedes to Kepler, Poinsot and Poincaré with the advent of
group theory and algebraic topology allowing for more rigorous study of such objects. More
recently, highly symmetric maps have been the subject of work by many. The subject is
well-established and further information can be found in [11, 16], the former being Jones and
Singerman’s seminal paper which provides firm foundations for the modern-day study of the
field, and the latter being Širáň’s comprehensive survey article. The context of symmetries in
(hyper)maps can be used to inform and highlight the interplay between different fields of study
in algebra, geometry, topology, combinatorics and graph theory including Riemann surfaces,
low-dimensional topology, coverings, dessins d’enfants, triangle groups, groups generated by
an involution and a non-involution, and the still-mysterious absolute Galois group. These
connections are explained in depth Jones [6], Jones and Singerman [10], and in the monograph
by Jones and Wolfart [12]. With so many links between apparently different disciplines there
are often multiple approaches to address a single question.

An orientably-regular map M(G; r, s) is reflexible if and only if there is a group automor-
phism of the group G = ⟨r, s⟩ which inverts the generators. An orientably-regular reflexible
map thus demonstrates further symmetry, in particular a mirror-symmetry which reflects the
embedding of the graph while leaving the surface and its pre-assigned orientation unchanged.
Each of the Platonic solids corresponds to an example of a reflexible map on the sphere, as
indeed is every regular tesselation of a simply-connected surface. An orientably-regular map
which is not reflexible is said to be chiral, and the genus of the surface must then necessarily
be at least 1. Chiral maps occur as non-isomorphic pairs, each one being the mirror-image
of its mate, yet supported by the same oriented surface. Examples on the torus include the
complete graph K5 which may be embedded to give a pair of chiral maps of type {4, 4} (see
Figure 2) and K7 to yield a chiral pair of type {3, 6}.

Figure 2: A chiral map of type {4, 4} and its mate on the same torus with given
orientation

When the group G = ⟨r, s | rm, sn, (rs)2, . . . ⟩ does not admit a generator-inverting au-
tomorphism the corresponding map M(G; r, s) is chiral, and groups with such forbidden
automorphisms are a subject of contemporary study. Combining the work of Leemans and
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Liebeck with that of Breda and Catalano [13, 1] the complete list of non-abelian finite sim-
ple groups which support a chiral map is all those except PSL(2, q), PSL(3, q), U3(q) and
A7. More recently this, along with earlier work by Nuzhin and others, has been extended by
Jones to form a classification of the non-abelian finite simple groups which can arise as the
automorphism group of a map for each of the 14 known classes of edge-transitive maps, see
[8] and references therein.

By Malle, Saxl and Weigel [15], each non-abelian finite simple group can be generated
by an involution and a non-involution. Letting the non-involution be called r, and denoting
the involution by the product rs, each non-abelian finite simple group G = ⟨r, s⟩ is therefore
the orientation-preserving automorphism group for some orientably-regular map. However,
this leaves no control over the type of the map, and in general nor are there any hints as to
whether such a map is chiral or reflexible.

Orientably-regular maps with a specific given hyperbolic type and simple automorphism
group have occasionally been addressed: for example Jones and Silver [9] have enumerated
the orientably-regular maps of type {4, 5} on the Suzuki groups Sz(2f ) for odd f > 1. By
the quirk of Suzuki groups that no element of order 4 is conjugate to its inverse, and the
fact that f is odd (implying that any orientation-reversing involutory automorphism must be
inner) it turns out that all these maps are chiral. However, until now it was not yet clear
that there exists a chiral map with simple orientation-preserving automorphism group for any
given hyperbolic type.

Meanwhile, for given fixed hyperbolic type it has been proved that infintiely many chiral
maps of that type exist. So long as there is a starting point of a chiral map for each type,
the MacBeath trick creates an infinite sequence of chiral covering maps of the same type, see
for example [3]. Alternatively, a theorem of Mal’cev [14] which imples that the hyperbolic
triangle groups are residually finite may be employed, a method which is outlined in Section
3.4 of [16]. However, the latter approach gives no way to guarantee that the automorphism
group of a resulting chiral map is simple, and using MacBeath’s trick will by its very nature
ensure quite the opposite.

In this paper we use permutation groups to address the question: for any given hyperbolic
type, is there a chiral map of that type with simple automorphism group? and so provide a
constructive proof of the following.

Theorem 1. Given a hyperbolic type {m,n}, there exists a chiral map of that type with
alternating automorphism group Ak, for some degree k.

For context, we reiterate that it is already known that chiral maps exist for any given
hyperbolic type {m,n} as per the following theorem from [3]. The authors constructed base
examples using permutation groups which are then used to prove that, for a given hyperbolic
type, there are infinitely many chiral maps of that type with simple underlying graph.

Theorem 2. (Conder, Hućıková, Nedela, Širáň, [3]) There exists an orientably-regular but
chiral map of type {m,n} with automorphism group Ak or Sk for some k for every hyperbolic
pair (m,n).

Asymptotically a quarter of the cases of Theorem 1 are therefore an immediate corollary
to Theorem 2, namely when both m and n are odd.

We also note that we do not need to address the case when n = 3 since the following much
stronger result has been known for some years, see [2].
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Theorem 3. (Bujalance, Conder, Costa, [2]) For all but finitely many k, for each m ≥ 7
there exists a chiral map M of type {m, 3} with Aut(M) = Ak.

Another powerful theorem regarding chiral hypermaps is due to Jones whose proof uses
spaces of differentials on Riemann surfaces and homology groups [5], thereby demonstrating
the connections between these topics. A corollary is as follows.

Theorem 4. (Jones, [5]) Every reflexible map of arbitrary hyperbolic type is smoothly covered
by infinitely many chiral maps.

This statement also has a more elementary algebraic and map-theoretic proof presented in
[18] by Reade and Širáň. The proof relies on creating a parallel product of the reflexible map
with a chiral map of the same type, known to exist by Theorem 2. Chirality then depends on
the automorphism group of a subgroup of the direct product of the two map automorphism
groups, and the algebra is much easier if we know that one of the map automorphism groups
is simple. Had it been known at the time, Theorem 1 would thus have provided a great
shortcut for this alternative proof of Theorem 4. We hope Theorem 1 may be useful in
further situations where having a simple group makes things simpler.

The structure of the paper is as follows. In section 2 we recall some background informa-
tion about chiral maps and permutation groups on which we will rely later. Since the dual
of a chiral map is also chiral, we may work up to duality, allowing us to assume thenceforth
that m is even. In sections 3 and 4, where n is respectively odd or even, we present the
constructions which then cover all but a small finite number of cases. For ease of reference,
in each case we prove that the resulting group generated is alternating, and the associated
map is chiral of the expected type. In section 5 we prove the main theorem by calling on the
work in the previous sections and addressing the missing cases.

The author is very grateful to Jozef Širáň for asking the question which this paper answers,
for his generosity with time and advice, for kindly reading an earlier draft and for many
enjoyable related discussions.

2 Further background

For the purposes of this paper it will be natural for us to work with a generating pair of
elements for the group G such that one of the generators is the involution t := rs, and the
other is either r or s. In particular the map is reflexible (not chiral) if and only if there
is an automorphism of G such that t is fixed (which is equivalent to inverting t since it is
self-inverse) while the generator r is inverted, which is the case if and only if there is an
automorphism fixing t and inverting s. As mentioned before, we will capitalise on the related
fact that the dual of a chiral map of type {m,n} is chiral of type {n,m}.

2.1 Permutation groups and primitivity

Throughout this paper we define the group G using permutations of some degree k, and
illustrate the definitions using diagrams as follows. Each of our permutation diagrams consists
of k points, is connected and defines the group G = ⟨r, t⟩ = ⟨s, t⟩. Being an involution, t is
self-inverse and is the product of a set of disjoint transpositions, so t is shown in the diagrams
as a matching using blue edges. The other generator, be it r or s, is defined according to its
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order and is illustrated using red cycles and red edges. For aesthetics, all loops to indicate a
fixed point are omitted.

This is a method which has been used in the past to prove the existence of certain types
of genuinely biregular maps, namely chiral rotary maps of type {m,n} in [3], and truly edge-
biregular maps of arbitrary feasible type in [17], whose underlying automorphism group is
either alternating or symmetric. As the authors in those works did, we make use of Jones’
generalisation of Jordan’s theorem, whose proof relies on the classification of finite simple
groups, specifically the stated Corollary 1.3 in [7]. For future reference, we state the relevant
part of this powerful theorem:

Theorem 5. (Jones) Let G be a primitive permutation group of finite degree k, containing
a cycle with f fixed points. Then G ≥ Ak if f ≥ 3.

For some of the propositions in this paper, namely Propositions 1, 2, 3, 9, 10 and 11, we
will be able to avoid relying on the classification of finite simple groups by using Jordan’s
original theorem:

Theorem 6. (Jordan) Let G be a primitive permutation group of finite degree k, containing
a cycle of prime length which fixes at least three points. Then G ≥ Ak.

2.2 Recognising chirality in permutation diagrams

Remember that the map M(G; r, s) is reflexible (not chiral) if and only if there is an auto-
morphism of the group G = ⟨r, s⟩ = ⟨s, t⟩ such that the generators are inverted. In particular
if inverting s and fixing t does not extend to an automorphism of the group G then the map
is chiral.

Ideally one would like to be able to determine the chirality of a map defined by a per-
mutation diagram just by observing the lack of reflective symmetry in the diagram itself.
This may sound wildly optimistic, but it can be arranged. Each of the constructions in this
paper has the group G being the alternating group Ak of the same degree as the diagram. In
particular each automorphism ϕ of the group G is equivalent to conjugation by an element of
the symmetric group Sk of that same degree, that is by a specific relabelling πϕ of the points
on the permutation diagram.

Lemma 1. Let G be such that D is a faithful permutation representation of G = ⟨s, t |
sn, t2, (st)m, . . . ⟩ which is defined on k points. Further suppose that Aut(G) ≤ Sk. Then if
the following circumstances are satisfied, this implies that the map M(G; r, s) is chiral.

• There is a unique point ζ in D which is fixed by sbt for some non-zero b, such that ζ is
not fixed by t.

• There is an integer c such that ζsc is fixed by t and ζts−c is not.

These circumstances highlight the lack of reflective symmetry in the graph of the permuta-
tion diagram. Reflexibility of the underlying map, determined by a hypothetical orientation-
reversing automorphism ϕ ∈ Aut(G) would demand that the two points ζ and ζt were swapped
by the relabelling π ∈ Sk (induced by ϕ) of the underlying permutation set. Furthermore it
would also be the case that ζsc and ζts−c were swapped by the same relabelling, but this
turns out to be impossible by the second condition. Note that the existence of such points
are easy to spot in permutation diagrams.
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Proof. Let the conditions in the lemma be satisfied, and define η := ζt, noting also that
η = ζsb is distinct from ζ.

The map M(G; r, s) is reflexible if and only if there is an involutory automorphism ϕ ∈
Aut(G) such that ϕ : s → s−1 and ϕ : t → t. Suppose (for a contradiction) that this is the
case, and that the corresponding relabelling of the points is π ∈ Sk such that sπ = s−1 and
tπ = t.

Since there is the unique point ζ which is fixed by sbt (but not by t), and ϕ is an auto-
morphism, there must be a unique point which is fixed by the image of sbt under ϕ, that is
which is fixed by s−bt (and not fixed by ϕ(t) = t). Notice that η is, by its definition, a fixed
point of s−bt which is not fixed by t and hence π interchanges the points labelled ζ and η.

Now π is also necessarily such that ζsc is mapped to (ζπ)ϕ(sc) = ηs−c = ζts−c. But,
by the conditions in the lemma, this means that π maps a point which is fixed by t to a
point which is not fixed by t, which contradicts the definition of π with respect to the t-fixing
automorphism ϕ.

We conclude that M(G; r, s) cannot be reflexible, and so it is chiral.

Note that this proof relies heavily on the automorphism group of the group G being
contained within Sk. There are examples of non-symmetric permutation diagrams generated
by s and t such that there is no orientation-reversing symmetry evident in the permutation
diagram, but the resulting map is reflexible. An example is highlighted by Conder and Wilson
in [4]. Using our notation this is equivalent to s := (123)(456) and t := (14)(67), and the
difference here is that the resulting group G = ⟨s, t⟩ ∼= PSL(2, 7) which has automorphism
group PGL(2, 7). Meanwhile PGL(2, 7) itself, since it contains an element of order 8, does not
embed into S7. There is no relabelling of the diagram which induces the orientation-reversing
automorphism, and yet there is an element of PGL(2, 7) which inverts the corresponding
generators S and T where ⟨S, T ⟩ = PSL(2, 7), so the map M(G; r, s) is reflexible. Our aim
is to construct examples whose automorphism group is Ak which is known to have Sk as its
automorphism group (when k ≥ 7), and as such an increase in minimum degree between the
group G and its automorphism group will not be a problem for us.

Some of our diagrams do not demonstrate the properties listed in the above lemma (even
after substituting r for s) and for most of those cases we may rely on the following lemma
which is very a minor modification of the above, and whose proof is analogous.

Lemma 2. Let G be such that D is a transitive faithful permutation representation of G =
⟨s, t | sn, t2, (st)m, . . . ⟩ which is defined on k points. Further suppose that Aut(G) ≤ Sk. Then
if the following circumstances are satisfied, this implies that the map M(G; r, s) is chiral.

• There is a unique point ζ in D which is fixed by sbt for some non-zero b, such that ζ is
not fixed by t.

• There is an integer c such that ζsct is fixed by s (or s2) while ζts−ct is not fixed by s
(respecitvely s2).

Proof. Omitted. Similar argument to that for the proof of Lemma 1.

3 When m is even and n is odd

We have assumed that m is even and our constructions depend on the relative sizes of m and
n. The notation is such that if there is a point labelled b′ it is the image under t of the point
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Figure 3: Construction 1 when i = −1 and i = 1 respectively

labelled b. This notation is not ambiguous and so, for example, the image under t of the point
labelled 2a− 1 may be denoted 2a− 1′ without brackets and without confusion.

3.1 Even m < n odd

Since n is odd, s is necessarily an even permutation and so for small m we build constructions
based on s being a single n-cycle, and then find t such that it is the product of an even number
of disjoint transpositions while at the same time ensuring their product, and so also r, has
the correct order.

Construction 1. For m = 4.
Let n = 4a+ 4 + i ≥ 9 where i ∈ {−1, 1} and a ≥ 1.
Define t := (α, α′)(β, β′)

∏2a
j=1(j, j

′) and s := si where
s−1 := (1, 2, . . . , 2a− 1, 2a, α, α′, β, 2a′, 2a− 1′, . . . , 2′, 1′) and
s1 := (1, 2, . . . , 2a− 1, 2a, α, β, γ, α′, 2a′, 2a− 1′, . . . , 2′, 1′, δ).

Proposition 1. Let n, s and t be defined according to Construction 1. Then M(G; r, s) is a
chiral map of type {4, n} and G = An+1.

Proof. It is clear from their definitions that both s and t are even permutations and have the
expected orders n and 2 respectively. Now
s−1t = (1, 2′)(2, 3′) . . . (2a− 1, 2a′)(2a, α′, β′, β)(1′)(α) while
s1t = (1, 2′)(2, 3′) . . . (2a − 1, 2a′)(2a, α′)(α, β′, β, γ)(1′, δ) and both have order 4. The order
of r is the clearly same as the order of r−1 = st, so M(G; r, s) is a map of type {4, n}.

In both cases G = ⟨s, t⟩ is certainly primitive since s has just one fixed point, namely β′,
and s acts transitively on the set of all remaining points. When i = −1 the permutation (s3t)2

is a single 7-cycle: in particular when i = −1, a ≥ 2 and the permutation is (α, β′, 2a−2, 2a−
1, 2a, β, α′) which fixes 4a− 3 points. Now consider the permutation (s2t)2 when i = 1 which
in every case is (α, 2a, β, γ, β′), a 5-cycle fixing 4a + 1 points. Applying Jordan’s Theorem
6 using the above permutations, cycles where there are enough fixed points, we see that G
contains An+1. Since in each case the group is generated by even permutations, G must be
the alternating group.

Then inspection of the corresponding diagrams in Figure 3 will yield that the map is chiral
by, respectively, Lemma 2 for example using b = 4 and c = 3, and Lemma 1 with b = 3 and
c = 2.

vii



1

1′

ϵ

δ

2

2′

3

3′

2a

2a′

α

α′

β β′

γ

2

2′

1

1′

3

3′

α

α′

β

β′

γ

δ
δ′

γ′

2a

2a′

Figure 4: Construction 2 when i = −1 and i = 1 respectively

Construction 2. For m = 6.
Let n = 4a+ 6 + i where i ∈ {−1, 1} and a ≥ 1.
Define t := (α, α′)(β, β′)ti

∏2a
j=1(j, j

′) where t−1 is trivial and
t1 := (γ, γ′)(δ, δ′), and define s := si where
s−1 := (1, 2, . . . , 2a− 1, 2a, α, β, γ, 2a′, 2a− 1′, . . . , 2′, 1′, δ, ϵ) and
s1 := (1, 2, . . . , 2a− 1, 2a, α, β, β′, γ, δ, γ′, α′, 2a′, 2a− 1′, . . . , 2′, 1′).

Proposition 2. Let n, s and t be defined as in Construction 2. Then M(G; r, s) is a chiral
map of type {6, n} and G = Ak.

Proof. The definitions ensure both generators s and t are even permutations and have the
required orders. Now st = r−1 and, when i = −1
st = (1, 2′)(2, 3′) . . . (2a− 1, 2a′)(2a, α′, α, β′, β, γ)(1′, δ, ϵ), and when i = 1
st = (1, 2′)(2, 3′) . . . (2a − 1, 2a′)(2a, α′)(α, β′, γ′)(γ, δ′, δ)(1′)(β), so in each case r has order
six.

In the case where i = 1 the group G = ⟨s, t⟩ is certainly primitive since s has just one
fixed point, namely δ′, and is transitive on all other points. In the case where i = −1 the
element s is a single cycle fixing precisely α′ and β′ while its conjugate stst fixes α′ and 2a′.
The stabiliser of α′ is transitive on all other points and hence G is primitive.

It remains to be proven that G is an alternating group in each case, and for this we
seek a permutation which is a single cycle of prime length. When i = −1 the permutation
(s2t)2 = (1′, 2′)(2a − 1, α)(2a, β, β′)(α′, γ)(δ, ϵ), which when squared yields a single 3-cycle.
In the other case, when i = 1, the permutation (s2t)2 = (2a, δ′, α, γ′, β′, δ, β), a 7-cycle fixing
4a + 1 points. This allows us to apply Jordan’s Theorem 6 and in each case we see that
G contains the alternating group of the corresponding degree (respectively k = n + 2 or
k = n+ 1), and since it is generated by even permutations, G must be the alternating group
itself.

Inspection of the corresponding diagram in Figure 4, respectively, using Lemma 1 with
b = 4 and c = 3 and using Lemma 2 with b = 6 and c = 4, yields that M(G; r, s) is a chiral
map of type {6, n}.

Construction 3. For m = 8.
Let n = 4a+ 6 + i where i ∈ {1,−1} and a ≥ 1.
Define t := (α, α′)(β, β′)

∏2a
j=1(j, j

′) and s := si where
s−1 := (1, 2, . . . , 2a− 1, 2a, α, β, γ, δ, ϵ, 2a′, 2a− 1′, . . . , 2′, 1′) and
s1 := (1, 2, . . . , 2a− 1, 2a, α, α′, β, γ, δ, ϵ, ζ, 2a′, 2a− 1′, . . . , 2′, 1′).
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Figure 5: Construction 3 when i = −1 and i = 1 respectively

Proposition 3. Let n, s and t be defined by Construction 3. Then the map M(G; r, s) is
chiral of type {8, n} and G = Ak.

Proof. (Sketch) It is easy to check the generators are even and that r, s and t have the expected
orders, so the corresponding map has type {8, n}. The group G can be shown to be primitive
by using similar arguments to those found in the proof of Proposition 2. When i = −1 the
element (s2t)4 is a 5-cycle and when i = 1 the element (s3t)2 is an 11-cycle. Combined with
Jordan’s Theorem 6, in all cases except when a = 1 and i = 1, we may conclude G = ⟨s, t⟩
is the alternating group Ak as expected. The claim is also true for the map of type {8, 11}
where G = A12. In each case the group generated is Ak and by Lemma 1 with b = 8 and
c = 5 with reference to Figure 5, we may conclude that the corresponding map M(G; r, s) is
chiral.

When even m ≥ 10 our constructions are built on r being the product of an m-cycle and
an odd number of disjoint transpositions, thereby ensuring that r is an even permutation of
order m.

Construction 4. For m ≥ 10.
Let n = m+ 4a+ i where i ∈ {1,−1} and a ≥ 0.
For a ≥ 1 let ta := Πa

j=1(αj , α
′
j)(βj , β

′
j) and ra := Πa

j=1(α
′
j , βj)(β

′
j , αj+1), and when a = 0

we define ta and ra to be the identity. Let ti = (8, 9) when i = −1, and when i = 1 let
ti = (αa+1, α

′
a+1). Define

r := (1, 2, . . . ,m− 1,m).(1′, α1).ra and t := (1, 1′)(2, 3)(4, 5)(6, 7).(m,m′).ta.ti.

Proposition 4. Let m be even such that 10 ≤ m < n where n is odd and let n, r and t be
defined according to Construction 4. Then M(G; r, s) is a chiral map of type {m,n} and G
is an alternating group.

Proof. Each generator is by construction an even permutation and r has order m while t is
an involution. The permutation s is a single cycle (of length n) with either three or four
fixed points, and so the corresponding map M(G; r, s) is of type {m,n}. So long as we can
prove G is primitive then we may call on Jones’ generalisation of Jordan’s Theorem 5 (and
so also unfortunately on the classification of finite simple groups) to confirm the claim that
the group G is alternating.

In both cases, the point labelled m′ is fixed by both r and also by tr2tr(−3)t. Notice that
the latter permutation sends βj to αj , and α1 to 1 and, when i = 1 it sends α′

a+1 to αa+1.

ix



1′
m′

α1

α′
1

β1

β′
1

α2

αa+1

m
1

2

3

4

5

678

9

1′
m′

α1

α′
1

β1

β′
1

α2

αa+1 α′
a+1

m
1

2

3

4

5

678

9

Figure 6: Construction 4 when i = −1 and i = 1 respectively

Combined with the definition of r one can see that StabG(m
′) is transitive on all other points,

and so the group G is primitive. Since G is generated by even permutations, we may now
conclude the group is the alternating group of the corresponding degree.

The map is chiral by the absence of reflective symmetry in the diagrams of Figure 6. In
particular when i = −1 there is a unique point (2) fixed by r7(tr−1)3t, and when i = 1 the
point labelled 2 is the unique point fixed by r5(tr−1)2t. In each case this determines how an
inverting automorphism ϕ (mapping r to its inverse and fixing t) must behave, if indeed it
exists, which we now assume. Bearing in mind that the group G = ⟨r, t⟩ is alternating, there
would be an associated relabelling πϕ of the point labelled 2: respectively 2πϕ = 9 or 2πϕ = 7.
Note that the point 2r−1 is not fixed by t in either case. However 2πϕr is fixed by t in all
cases except when m = 10 and i = −1. In this special case the point 2r−1t = 1′ is not fixed
by r while 9rt = 10′ is fixed by r. In every case there is a contradiction: such a relabelling πϕ
cannot correspond to an automorphism of the permutation group G which fixes t and inverts
r. We conclude that the maps resulting from Construction 4 are chiral.

3.2 Even m > n odd

We apply a different approach to this situation, remembering that if s is the product of any
number of distinct n-cycles then it will be an even permutation. Then we must ensure that we
can build in an even involution t such that their product st has order m and the permutation
diagram is connected. By ensuring the generators are even permutations, the cycle structure
for the product st in each of our constructions turns out to be of the form 2.m or 23.m. The
latter occurs when s is defined as having more than one n-cycle, and the constructions are
then such that s2t is a single cycle fixing three points, allowing us to apply Theorem 5.

The situation for small values of n are thus treated differently. Remember that Bujalance,
Conder and Costa’s work, Theorem 3, means that the case when n = 3 need not be addressed.
The next smallest odd value is when n = 5, and the following construction gives an example
of an alternating chiral map for all but finitely many types {m, 5}.

Construction 5. For n = 5 and even m such that m+6 = 5ν+a where ν ≥ 4 and 0 ≤ a ≤ 4.
When 1 ≤ a ≤ 4 define ta =

∏a
j=1(5ν + 1− j, 5ν + 1− j′) and when a = 0 define ta to be the

identity. Meanwhile let tν :=
∏ν−1

i=1 (5i, 5i+ 1) and define t := (2, 4)(7, 9)(12, 14)tatν and
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Figure 7: Construction 6 when odd n ≥ 7

s :=
∏ν−1

i=0 (5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4, 5i+ 5).

Proposition 5. Let n = 5 and m, r, t be defined by Construction 5. Then G = ⟨r, t⟩ is
alternating and the map M(G; r, s) is chiral of type {m, 5}.

Proof. Certainly s has order five, t is an involution, and the permutation st = (1, 4, 6, 9, 11, 14, . . .
5i + 1, 5i + 2, 5i + 3, 5i + 4.5i + 6 . . . 5ν − 4,Π, 5ν − 5, . . . , 5i, . . . 15, 10, 5)(2, 3)(7, 8)(12, 13),
where Π is the natural subsequence of 4 + a points from the ordered list 5ν − 3′, 5ν − 3, 5ν −
2′, 5ν − 2, 5ν − 1′, 5ν − 1, 5ν ′, 5ν. This has (even) order 5ν + a− 6, so r = ts−1 also has order
m, and thus M(G; r, s) is a map of type {m, 5}.

It can be checked that the permutation s2t has three fixed points, namely 2, 7, and 12, and
a single long cycle, as does its conjugate (s2t)((ts)

4). With only one fixed point in common, we
have that the stabiliser of the point labelled 2 is transitive and so the group G is primitive. We
then may use the same element s2t, which has a sinlge cycle and three fixed points, to apply
Jones’ Theorem 5 and conclude the group is alternating. Hence G = Ak where k = 5ν + a is
the degree of the defined permutation group.

Chirality of the map M(G; r, s) can be confirmed by considering the point labelled 1 which
is unique in being fixed by both t and also by sts2. In contrast, there is no point which is
fixed by t and also by s−1ts−2 and, since Aut(M) = G = Ak and therefore Aut(G) = Sk,
there can be no group automorphism fixing t and inverting s.

When m = n+a with n ≥ 7 and 1 ≤ a ≤ n− 6 there is an easy construction which covers
this infinitude of cases and whose diagram is as shown in Figure 7: s is a single n-cycle, while
t consists of a + 2 pendant edges from points on the cycle, and one edge transposing two
points on the cycle. To formalise, we define the following construction.

Construction 6. For even m = n+ a when odd n ≥ 7 and 1 ≤ a ≤ n− 6.
Define s := (1, 2, 3, . . . , n− 1, n) and t := (1, 3)

∏5+a
j=4(j, j

′).

Proposition 6. Let n ≥ 7 with n, m, r and t being defined according to Construction 6.
Then M(G; r, s) is a chiral map of type {m,n} and G is an alternating group.

Proof. The order of r−1 = st is m = n + a, which is even and as expected. The group
generated is transitive and also primitive since s2t is a cycle with a single fixed point. Both
s and t are even permutations, and s is a single cycle with enough fixed points (a + 2 ≥ 3)
to allow us to apply Jones’ version of Jordan’s theorem. Thus Theorem 5 proves the group is
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Figure 8: Example of Construction 7 when n ≥ 11, a = 5, ν = 3

alternating. Note that in any case t fixes the point labelled n and this ensures the diagram
in Figure 7 has no reflective symmetry. The resulting map is chiral by Lemma 1 with b = 2
and c = −1.

There is a further construction which covers many more cases as follows:

Construction 7. For even m+6 = νn+a with odd n ≥ 11, ν ≥ 2 and 0 ≤ a ≤ n−1. When
1 ≤ a ≤ n− 1 define ta =

∏a
j=1(j, j

′) and when a = 0 define ta to be the identity. Meanwhile

let tν :=
∏ν−1

i=1 (in, in+ 1) and define
s := (1, 2, . . . , n − 1, n)(n + 1, n + 2, . . . , 2n) . . . ((ν − 1)n + 1, . . . , νn − 1, νn) and t := (n +
2, n+ 4)(n+ 5, n+ 7)(n+ 8, n+ 10)tatν .

A permutation diagram showing an example of Construction 7 for the case when a = 5
and ν = 3 is shown in Figure 8.

Proposition 7. Let n ≥ 11 be odd, with even m and the permutations s and t being defined
by Construction 7. Then M(G; r, s) is a chiral map of type {m,n} and G is an alternating
group.

Proof. When ν is even a must be even so ta is even, and tν is odd. Meanwhile if ν is odd
then ta is odd, and tν is even. In any case the element t is an even permutation, as is s. The
order of r−1 = st is νn+ a− 6 = m and so the map has type {m,n}.

The group is clearly transitive by connectivity of the diagram, and primitivity is addressed
by similar arguments to previously: s2t has three fixed points and a long cycle, as does
its conjugate (s2t)s

6
. With only one fixed point in common, and since ⟨s2t, (s2t)s6⟩ acts

transitively on all other points, we have that the stabiliser of the point labelled n + 2 is
transitive and so the group is primitive. We use the same element s2t to apply Jones’ Theorem
5 and conclude the group G is alternating.

We may then apply the usual reasoning with reference to the permutation diagram to
prove chirality. Under the action of a hypothetical inverting automorphism the unique points
n+2 and n+10 would have to be interchanged. The only way in which this could be consistent
with an orientation-reversing relabelling of the diagram would be if n = 11 and a = 0 and
ν = 3 but this would contradict our ongoing assumption that m is even.

The above two constructions cover all types where even m > n ≥ 11. For smaller values of
n just a single n-cycle is insufficient for the structures upon which we rely, namely three fixed
points of s2t. The following construction applies to the two remaining values of n, namely
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n = 7 and n = 9, for which we require at least two n-cycles in order to accommodate the
three fixed points for s2t, and a further n-cycle to allow for the congruence class of m+6 ≡ a
modulo n.

Construction 8. For n ∈ {7, 9}. Let even m + 6 = νn + a with ν ≥ 3 and 0 ≤ a ≤ n − 1.
Let tν =

∏ν−1
i=1 (ni, ni + 1). When a ≥ 1 let ta =

∏a
j=1(nν + 1 − j, nν + 1 − j′), and trivial

otherwise. Define
s :=

∏ν−1
i=0 (ni+ 1, ni+ 2, . . . , ni+ n) and t := (13)(46)(n+ 2, n+ 4)tνta.

Proposition 8. Let fixed n ∈ {7, 9} with m, s and t being defined according to Construction
8. Then M(G; r, s) is a chiral map of type {m,n} and G is an alternating group.

Proof. Omitted - possible using similar arguments to previous cases.

4 When both m and n are even

When both m and n are even we may rely on duality and assume m ≤ n. The constructions
presented in the previous section can then be modified for our purposes. An advantage of
having both parameters even is that we may, without an unwanted consequential change in
the order, allow transpositions to occur in the products rt and/or st. We must still be careful
to ensure that the orders are as we require, and that the generators are even permutations.

Construction 9. For m = 4.
Let n = 4a+ 7 + i where i ∈ {−1, 1} and a ≥ 1. Define s := si where

s−1 := (1, 2, . . . , 2a− 1, 2a, α, α′, β, 2a′, 2a− 1′, . . . , 2′, 1′, γ, δ, γ′)(δ′, ϵ) and
s1 := (1, 2, . . . , 2a− 1, 2a, α, α′, β, β′, ζ, 2a′, 2a− 1′, . . . , 2′, 1′, γ, δ, γ′)(δ′, ϵ).
Define t := (α, α′)(β, β′)(γ, γ′)(δ, δ′)

∏2a
j=1(j, j

′).

Proposition 9. Let n, s and t be defined according to Construction 9. Then M(G; r, s) is a
chiral map of type {4, n} and G = Ak.

Proof. The type of each map is easy to check, and is {4, n} as expected. There is precisely
one point (labelled ϵ) which is fixed by s2 and t. These two permutations act transitively on
all other points (t links the three other orbits of s2) and so the group G is primitive. When
i = −1, (s4t)6 is a 7-cycle, and when i = 1 the permutation (s3t)12 is a 5-cycle, so by Jordan’s
Theorem 6 in each case the group G = ⟨s, t⟩ is alternating. The maps are chiral by inspection
of the diagrams in Figure 9 using respectively Lemma 2 with b = 1 and c = 2 and Lemma 1
with b = 4 and c = −2a.

2a

2a′

α

α′

β

β′

1

1′

γ′

γ

δ
δ′ϵ

2a

2a′

α
α′

β

β′

ζ

1

1′

γ′

γ

δ
δ′ϵ

Figure 9: Construction 9 when i = −1 and i = 1 respectively
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Figure 10: Construction 10 when i = −1 and i = 1 respectively

Notice that this construction may be extended to the cases when a = 0, that is when n ∈
{6, 8}, by omitting all the numbered points and their primes. This gives t = (α, α′)(β, β′)(γ, γ′)(δ, δ′)
while s−1 = (α, α′, β, γ, δ, γ′)(δ′, ϵ) and s1 = (α, α′, β, β′, ζ, γ, δ, γ′)(δ′, ϵ). Respectively these
yield a map of type {4, 6} with simple underlying group G = ⟨s, t⟩ = A9, and a map of type
{4, 8} with G = A10. Chirality in each case may be proved in the same way as in the proof
of Proposition 9.

Remembering that the type {4, 4} is toroidal, the work so far proves there is a simple
(alternating) group supporting a chiral map for any given hyperbolic type {4, n} and, so also
by duality for any hyperbolic type {n, 4}.

A minor modification of the diagram for m = 4 yields the next construction, valid for
when m = 6.

Construction 10. For m = 6.
Let n = 4a+ 7 + i where i ∈ {−1, 1} and a ≥ 1. Define s := si where

s−1 = (1, 2, . . . , 2a− 1, 2a, α, α′, β, 2a′, 2a− 1′, . . . , 2′, 1′, δ, ϵ, δ′)(β′, γ),
s1 = (1, 2, . . . , 2a− 1, 2a, α, α′, β, β′, γ, 2a′, 2a− 1′, . . . , 2′, 1′, δ, ϵ, δ′)(γ′, ζ).
Define t := (α, α′)(β, β′)(γ, γ′)(δ, δ′)

∏2a
j=1(j, j

′).

Proposition 10. Let n, s and t be defined as in Construction 10. Then M(G; r, s) is a chiral
map of type {6, n} and G = Ak.

Proof. The map has the correct type {6, n} since s is an n-cycle and r = ts−1 is the product
of transpositions with a 6-cycle. The group G = ⟨s, t⟩ is primitive: when i = −1 the point γ′

is fixed by r and tr2t which together act transitively on all the other points; when i = 1 the
elements r2 and t fix the point ζ and they act transitively on the other points. When i = −1,
(s4t)2 is a 7-cycle, when i = 1 the permutation (s2t)6 is a 5-cycle and the generators are even
so, by Jordan’s Theorem 6, the group G is alternating of the same degree as the diagram.
The map is chiral by Lemma 2 using b = 2 and c = −2a− 1, see Figure 10.

Notice that this construction can also be extended to the case when a = 0 and i = 1
to yield a chiral map of type {6, 8} with generators s = (α, α′, β, β′, γ, δ, ϵ, δ′)(γ′, ζ) and
t = (α, α′)(β, β′)(γ, γ′)(δ, δ′) and alternating automorphism group G = ⟨s, t⟩ = A10.

The remaining cases are covered by the following two constructions.

Construction 11. For m = 8.
Let n = 4a + 7 + i ≥ 8 where i ∈ {−1, 1} and a ≥ 0. Define s := si where s−1 :=

(1, 2, . . . , 2a− 1, 2a, α, γ, ϵ, 2a′, 2a− 1′, . . . , 2′, 1′, δ, ζ, δ′)(α′, β) while

xiv



1

1′

δ′

ζ

δ

2a

2a′

α

α′
β
β′

γ γ′

ϵ

1

1′

δ′

ζ

δ

2a

2a′

α
α′
η

β

β′

γ

γ′

ϵ

Figure 11: Construction 11 when i = −1 and i = 1 respectively

s1 = (α, β, γ, γ′, ϵ, δ, ζ, δ′)(α′, η) when a = 0, and when a ≥ 1
s1 = (1, 2, . . . 2a− 1, 2a, α, β, γ, γ′, ϵ, 2a′, 2a− 1′, . . . , 2′, 1′, δ, ζ, δ′)(α′, η).

Define t := ta(α, α
′)(β, β′)(γ, γ′)(δ, δ′) where, ta is trivial when a = 0 and otherwise

ta :=
∏2a

j=1(j, j
′).

Proposition 11. Let n, s and t be defined according to Construction 11. Then M(G; r, s)
is a chiral map of type {8, n} and G = Ak.

Proof. The map has the correct type - this is easy to check.
For each case we suppose, for a contradiction, the group is imprimitive, and that B is a

non-trivial proper block system. In the case when i = −1 there are precisely two points which
are fixed by s. Note that neither of the two points γ′ and β′ can be in the same block as
any point on the long s-cycle, since that block would then necessarily include all the points,
a contradiction. Also, neither of the points α′ or β can be in the same block as γ′, since then
both would be, and the block containing β′ would have to contain α which is on the s-cycle
and leads to the same contradiction. Therefore γ′ and β′ must be in the same block B1 ∈ B
and moreover the maximum size of a non-trivial block is two. Applying t to the elements
in B1 implies that the points γ and β are in B2 ∈ B, and applying s2 (which fixes β) leads
us to the contradiction that also 2a′ ∈ B2. In the case where i = 1 there is a unique point,
β′ ∈ B1, which is fixed by s. The only plausible candidates for other elements in B1 ∈ B are
one of, and hence both, α′ and η. Application of tst then implies B1 contains γ′, an element
on the long s-cycle, and so B1 contains all the points, a contradiction. We conclude that the
construction yields only primitive groups.

When i = −1, (s2t)4 is a 3-cycle, and when i = 1 the permutation (s3t)2 is a 11-cycle.
So long as n ̸= 8 we may use these permutations to apply Jordan’s Theorem 6 and conclude
that the group G is alternating. In the case where n = 8 then k = 11 and it can be checked
that the group generated is also alternating, G = A11. The map is then chiral by inspection
of the diagrams in Figure 11 using Lemma 1 and b = 2 and c = −2a− 1.

Construction 12. For m ≥ 10.
Let n = m+ 4a+ i where i ∈ {0, 2} and a ≥ 0.
When m = n ≡ 0 modulo 4 let r = (1, 2, . . . ,m−1,m)(1′, α, β, γ) and t = (1, 1′)(2, 3)(4, 5)(6, 8).
Otherwise let r = (1, 2, . . . ,m− 1,m)(1′, α1)rari and

t = (1, 1′)(2, 3)(4, 5)(6, 8)(m−1,m−1′)(m,m′)ta where, for a ≥ 1 define ta := Πa
j=1(αj , α

′
j)(βj , β

′
j)

and ra := Πa
j=1(α

′
j , βj)(β

′
j , αj+1), and when a = 0 we define ta and ra to be the identity. When

i = 0 let ri be the identity, otherwise let ri = (m− 1′, γ)(m′, δ).
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Figure 12: Construction 12 when m = n ≡ 0 mod 4 and otherwise.

Proposition 12. Let m,n be even such that 10 ≤ m ≤ n and let n, r and t be defined by
Construction 12. Then M(G; r, s) is a chiral map of type {m,n} and G is an alternating
group.

Proof. By its definition the map has the correct type {m,n}. To demonstrate that the group
is primitive, again we may employ earlier arguments: there is just one point (2) fixed by both
rt and also by its conjugate (rt)r

2
, and meanwhile the other orbits of rt (which is the product

of a long cycle with a transposition and two fixed points) are fused by the action of (rt)r
2
.

When m = n ≡ 0 modulo 4, r4t is a single cycle fixing three points:
(1, 4, 6, 10, . . . ,m− 2, 3, 7, . . . ,m− 1, 2, 8, . . . ,m, 5, 9, . . . ,m− 3, 1′)(α)(β)(γ). In this case the
group G is alternating by Theorem 5.

Otherwise when m ≡ 0, 2 mod 4, the permutation r4t is respectively
(1, 4, 6, 10, . . . ,m− 2, 3, 7, . . . ,m− 1′,m− 1, 2, 8, . . . ,m′,m, 5, 9, . . . ,m− 3, 1′)ta,
(1, 4, 6, 10, . . . ,m′,m, 5, 9, . . . ,m− 1′,m− 1, 2, 8, . . . ,m− 2, 3, 7, . . . ,m− 3, 1′)ta.
In these cases the permutation (r4t)2 fixes every point labelled with a Greek letter and has
cyclic decomposition consisting of precisely one cycle of length m+ 3. When a ≥ 1 or i = 2,
this permutation has enough fixed points to be able to call on Jones’ version of Jordan’s
Theorem 5 to prove the alternating claim. When a = 0 and i = 0, then m = n, and the only
remaining case is when m ≡ 2 mod 4. Consider the permutation r2t = (1, 2, 5, 7, . . . ,m −
1′,m − 1, 1′)(3, 4, 8, . . . ,m′,m)(6)(α1) which, when m ≡ 2 mod 4, has cycles of coprime odd

lengths 1
2m + 2 and 1

2m so the permutation (r2t)
1
2
m is a single cycle. Applying Theorem 5

for one final time, we may conclude that in every case the group G is alternating.
Chirality follows by Lemma 1 with b = 2 and c = 3 for every m ≥ 12, while in the special

case where m = 10 we use Lemma 2 with the same parameters, see Figure 12.

5 Proof of Theorem 1

In this section we prove Theorem 1, which we reproduce here for ease of reference: Given a
hyperbolic type {m,n}, there exists a chiral map of that type with alternating automorphism
group Ak, for some degree k.
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Proof. When m and n are both odd we may rely on the work of Conder, Hućıková, Nedela and
Širáň as follows. The orientation-preserving automorphism group G = ⟨r, s⟩, from Theorem
2 is either alternating or symmetric and can be generated by two elements, one of order m
and the other of order n, whose product is an involution. Since m and n are both odd, these
are even permutations and the claim is immediate.

For the cases when precisely one of m or n is odd, we assume m is even and we then split
the situation according to the relative sizes of m and n.

When even m < n odd we may use the constructions in this paper combined with Propo-
sitions 1, 2, 3, and 4 to cover all but finitely many cases. In particular, when m < n:
Proposition 1 addresses when m = 4 and n ≥ 9, leaving the hyperbolic types {4, 5} and {4, 7}
(and dual types {5, 4} and {7, 4}) still under question; Proposition 2 proves the claim when
m = 6 and n ≥ 9 and so leaves the existence of an alternating chiral map of type {6, 7} (and
so also the type {7, 6}) yet to be determined; Proposition 3 covers the claim when m = 8 and
n ≥ 9; and Proposition 4 completes this part by proving the claim for all types {m,n} where
10 ≤ m < n.

Next we address the cases where odd n < m which is even. In the case where n = 3
we use Theorem 3 from Bujalance, Conder and Costa, noting that the only missing values
for m are for non-hyperbolic types. Proposition 5 demonstrates that when n = 5 the claim
is true for all even m ≥ 14. When n = 7 and even m ≥ 16 the question of existence of a
chiral map of type {m,n} with alternating group is dealt with by Proposition 8 as is the case
when n = 9 and m ≥ 22. Proposition 6 shows that when odd n ≥ 7 and even m is such
that n+1 ≤ m ≤ 2n− 6 there is a chiral map of type {m,n} with alternating automorphism
group while Proposition 7 proves the same claim for n ≥ 11 whenever even m is such that
m ≥ 2n− 6.

When both m and n are even, we call on duality and use: Proposition 9 for m = 4 and
n ≥ 10; Proposition 10 for m = 6 and n ≥ 10; Proposition 11 for m = 8; and Proposition 12
for m ≥ 10. Small modifications to the constructions yield examples for types {4, 6}, {4, 8}
and {6, 8} which are given in section 4. The only such type still missing is {6, 6}.

Assuming m is even, and working up to duality, an example pair of generators for a chiral
map with alternating group is given in Table 1 for each of the missing types.

Type s t G
{4, 5} (1, 2, 3, 4, 5) (1, 3)(2, 6) A6

{6, 5} (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 6)(2, 4)(7, 8)(9, 10) A10

{8, 5} (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 6)(2, 4) A10

{10, 5} (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 6)(2, 4)(7, 11)(8, 12) A12

{12, 5} (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 6)(2, 4)(7, 11)(8, 12)(9, 13)(10, 14) A14

{6, 6} (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12) (1, 7)(2, 5)(6, 13)(8, 12)(9, 14)(10, 15) A15

{4, 7} (1, 2, 3, 4, 5, 6, 7) (1, 5)(2, 3)(4, 9)(7, 8) A9

{6, 7} (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14) (1, 3)(4, 6)(7, 8)(9, 13)(10, 15)(11, 16) A16

{10, 7} (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14) (1, 8)(2, 4)(5, 6)(9, 10) A14

{12, 7} (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14) (1, 8)(2, 3)(4, 5)(6, 15)(7, 16)(9, 17)(10, 12)(13, 14) A17

{14, 7} (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14) (1, 8)(7, 9)(10, 15)(11, 16) A16

{14, 9} (1, 2, 3, 4, 5, 6, 7, 8, 9)(10, 11, 12) := S9 (1, 10)(2, 12)(3, 13)(4, 14)(5, 15)(6, 16) A16

{16, 9} S9(13, 17, 18) (1, 10)(2, 12)(3, 13)(4, 14)(5, 15)(6, 16) A18

{18, 9} S9(13, 17, 18)(14, 19, 20) (1, 10)(2, 12)(3, 13)(4, 14)(5, 15)(6, 16) A20

{20, 9} S9(13, 17, 18)(14, 19, 20)(15, 21, 22) (1, 10)(2, 12)(3, 13)(4, 14)(5, 15)(6, 16) A22

Table 1: Filling gaps - the missing types
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The theorem has been proven for all hyperbolic types {m,n} where m is even, and so
by the well-known fact that the dual of a chiral map is chiral with the same automorphism
group, the proof is complete.
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