Riešenia

1. Uvádzame vždy najprv Gaussov tvar a potom redukovaný Gaussov tvar matice:

\begin{displaymath}(a)\ \ \left( \begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 1 \\
...
...}
1 & 0 & 0\\
0 & 1 & 0 \\
0 & 0 & 1 \end{array}\right) \ \ ;\end{displaymath}


\begin{displaymath}(b)\ \ \left( \begin{array}{rrrr}
1 & 0 & 0 & 1\\
0 & 1 & 1 ...
... & 1\\
0 & 1 & 0 & -1\\
0 & 0 & 1 & 1\end{array}\right) \ \ ;\end{displaymath}


\begin{displaymath}(c)\ \ \left( \begin{array}{rrrrr}
1 & 2 & 4 & -3 & -2\\
0 &...
...& 0 & 1 & -2/3 & 0\\
0 & 0 & 0 & 0 & 1\end{array}\right) \ \ ;\end{displaymath}


\begin{displaymath}(d)\ \ \left( \begin{array}{rrrrr}
1 & 1 & -1/2 & 0 & 1/2 \\ ...
...
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0\end{array}\right) \ .\end{displaymath}

2. (a) Áno. (b) Nie. (c) Nie.

3. (a) 2. (b) 3. (c) 2. (d) 3.

4.

\begin{displaymath}
% latex2html id marker 10416
(a)\ \ \left( \begin{array}{rr...
...left( \begin{array}{rr}
0 & -1 \\
1 & 0 \end{array}\right) \ .\end{displaymath}

5. (a) regulárna, (b) regulárna, (c) regulárna

6.

\begin{displaymath}{\bf A}^{-1}= \left( \begin{array}{rrr}
3/2 & 3 & -1 \\
-1 &...
...5 \\
-1 & 4/5 & -1/5 \\
3 & -8/5 & 2/5 \end{array}\right) \ .\end{displaymath}

7. $\vert{\bf A}\vert=-6 $; $\vert{\bf B}\vert=-18$; $\vert{\bf C}\vert=120$.

8.

\begin{displaymath}{\bf A}^{-1}= \left( \begin{array}{rrr}
1 & 1 & 2 \\
3 & -2 ...
...3 & 25 \\
18 & -26 & -2 \\
3 & 39 & -9 \end{array}\right) \ .\end{displaymath}

9. (a) Áno; opačné tvrdenie neplatí. (b) Nie. (c) Áno. (d) Nie.