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Abstract
Numerical methods, like the finite element method (FEM) or finite volume method (FVM), are widely used to provide
solutions in many boundary value problems. In previous studies, these numerical methods have also been applied in geodesy
but demanded extensive computations because the upper boundary condition was usually set up at the satellite orbit level,
hundreds of kilometers above the Earth. The relatively large distances between the lower boundary of the Earth’s surface and
the upper boundary exacerbate the computation loads because of the required discretization in between. Considering that many
areas, such as the US, have uniformly distributed airborne gravity data just a few kilometers above the topography, we adapt
the upper boundary from the satellite orbit level to the mean flight level of the airborne gravimetry. The significant decrease
in the domain of solution dramatically reduces the large computation demand for FEM or FVM. This paper demonstrates
the advantages of using FVM in the decreased domain in simulated and actual field cases in study areas of interest. In the
simulated case, the FVM numerical results show that precision improvement of about an order of magnitude can be obtained
when moving the upper boundary from 250 to 10 km, the upper altitude of the GRAV-D flights. A 2–3 cm level of accurate
quasi-geoid model can be obtained for the actual datasets depending on different schemes used to model the topographic
mass. In flat areas, the FVM solution can reach to about 1 cm precision, which is comparable with the counterparts from
classical methods. The paper also demonstrates how to find the upper boundary if no airborne data are available. Finally, the
numerical method provides a 3D discrete representation of the entire local gravity field instead of a surface solution, a (quasi)
geoid model.
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1 Introduction

The geodetic boundary value problem (GBVP) starts with
the Laplace equation and the boundary condition (BC) on
the geoid. Traditionally, the solution can be derived by using
Green’s identities (Heiskanen and Moritz 1967). Stokes-
Helmert’s or Molodenski’s method is typically used in local
gravity field modeling, which yields the geoid or quasi-geoid
models. A general description of their implementations can
be found in numerous local geoid modeling papers, such
as the recent Colorado test summary paper (Wang et al.
2021). For more detailed information on the specifics of
the implementation of Stokes–Helmert’s method, we recom-
mendHuang andVéronneau (2013) as a starting point simply
because their implementation schemes yielded the best solu-
tion in the recent Colorado test. Molodenski’s method is
exemplified in Denker et al. (2009), while Sjöberg and Abre-
hdary (2023) offer insightful remarks on determining geoid
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and quasi-geoid separations. In addition to these classical
methods, relatively recently, the spherical radial basis func-
tions (SRBF) method has been also used in local geoid and
quasi-geoidmodeling (Schmidt et al. 2007;Klees et al. 2008).
However, it heavily relies on regularization, especially when
airborne gravimetric data are involved (Li 2018b). Other
methods, such as least-squares collocation (LSC, Tschern-
ing and Rapp 1974, and Moritz 1980), can also be used.
However, these “analytical” solutions must grapple with the
unfathomable difficulties in the downward continuation step
(Li et al. 2022). Hence, numerical methods without explicitly

dealing with the radial ratio term (
( R
r

)n+1
) will be desirable

to simplify the problem.
The finite element method (FEM) (Reddy 2006) and finite

volume method (FVM) (Eymard et al. 2000) are widely
used to solve boundary value problems (BVPs) where ana-
lytical solutions are either too complex to obtain or do not
exist. Their applications have gained momentum in geodesy,
especially in recent yearswhen high-performance computing
(HPC) systems become more accessible (see, e.g., Fašková
et al. 2010;Minarechová et al. 2015, 2021;Macák et al. 2021;
Čunderlík et al. 2020, 2024). The number of discretization
elements largely depends on the upper and lower boundary
distances. The upper boundary is often set at the altitude of
the satellite orbit level to exploit their in situ observations.
Thus, the resulting domain to be solved vertically spans about
250 km. This demands colossal computation efforts, espe-
cially for high-resolution and high-accuracy models.

Airborne gravimetry has been used for decades (Childers
et al. 1999; Forsberg et al. 2001; Li 2011). Uniformly dis-
tributed airborne gravity data coverage inmany regions is not
uncommon these days. Moreover, they are registered just a
few kilometers above the local topography and significantly
improve the precision of the local models (Li et al. 2016).
Thus, the upper boundary in the FEM or FVM approaches
can be easily shifted down from the satellite orbit level to
the flight altitudes. The use of airborne gravity data signif-
icantly reduces the large computation requirements in the
FEM or FVM applications. This is the primary motivation of
this study, which is focused on the application of the FVM
approach for airborne gravity data.

The rest of the paper is organized in the following way.
Section 2 describes a briefmathematical background of FVM
for solving GBVP numerically. Section 3 demonstrates some
typical numerical behaviors of the FVMusing simulated syn-
thetic data to highlight the effects of changing altitudes of the
upper boundary. Section 4 uses real datasets to generate a
local quasi-geoid model in the study area in Colorado, USA,
which is a mountainous area. The results are evaluated using
the recent GNSS/Leveling dataset collected by the Geoid
Slope Validation Survey of 2017 (Van Westrum et al. 2021

andWang et al. 2021), which is one of the most accurate val-
idation datasets in the world, as historical GNSS/Leveling
datasets are often subject to systematic errors or various nat-
ural motions (see e.g., Li 2018a). The FVMGRAV-D scheme
is also tested in a flat area, Southern Texas, which also has
accurate GNSS/Leveling benchmarks (Smith et al. 2013).
For both of the testing areas, the solutions are compared
with their counterparts from the classical method head-to-
head. Finally, discussions are given in Sect. 5, and summary
is made in Sect. 6.

2 FVM as a numerical method to solve GBVP

In classical GBVP, the analytical solution of the disturbing
potential T is given by:

T (r , θ , λ) � R

4π

¨

σ

�g
∞∑

n�2

(
2n + 1

n − 1

(
R

r

)n+1
)

Pn(cosψ)dσ

� R

4π

¨

σ

S(r , ψ)�gdσ
on the geoid

=⇒ T (R, θ , λ)

� R

4π

¨

σ

S(ψ)�gdσ (1)

where r �√
x2 + y2 + z2 is the radial distance of the com-

putation point with Cartesian coordinate (x , y, z), θ and λ

are the co-latitude and longitude, R is the mean radius of
the Earth, ψ is the angle between the computation point and
the integration point, Pn is the Legendre’s polynomials of
degree n, �g is a global gravity anomaly grid on the bound-
ing sphere,

˜
σ
denotes the usual abbreviation for an integral

extended over the full solid angle, and dσ is the element of
solid angle (Heiskanen and Moritz 1967). The kernel func-
tion S(r , ψ) is given by Eq. (2).

(2)

S (r , ψ) � 2R

l
+
R

r
− 3

Rl

r2

− R2

r2
cosψ

(
5 + 3ln

r − Rcosψ + l

2r

)
.

When R � r , it reduces to

(3)

S (ψ) � S (R � r , ψ) � 1

sin(ψ/2)
− 6sin

ψ

2
+ 1

− 5cosψ − 3cosψln

(
sin

ψ

2
+ sin2

ψ

2

)
,

where

l �
√
r2 + R2 − 2Rrcosψ. (4)
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Fig. 1 A sketch of the 3D computational domain of the FVM approach for local gravity field modeling

Fig. 2 The root mean squared
errors, the differences between
the FVM modeled disturbing
potential and the true values, at
different layers when using
different upper BCs synthesized
from the full field EGM2008
(complete to d/o 2190) at
different altitudes (250 km
indicated by the blue dotted
curve, 100 km described by
green dashed curve and 10 km
represented by the thick red
curve, respectively)

To compute a geoid model or a quasi-geoid model, all
gravity data need to be downward continued (Li et al. 2022)
onto the geoid or a level surface, respectively. And the kernel
function, S(ψ), has to be modified to minimize the far zone
contribution effects, since the integration is usually limited
in a local area (Li and Wang 2011).

Unlike the classical approach, FVM is a numericalmethod
of variational calculus, where the first step is a division of

the whole computational domain into finite volumes p. The
shape of these volumes can be various, but for our needs we
consider the spherical prisms (Minarechová et al. 2015). To
obtain a weak formulation of the Laplace equation for the
disturbing potential T , this governing equation is integrated
over the finite volume p using the divergence theorem. In this
way, we convert the volume integral,

˝
dv, to the surface

integral,
˜
ds, with the normal derivative of the disturbing
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Fig. 3 Example of the RTM-based data cleaning algorithm applied in
the target area (The upper panel (a) shows the location of the points,
indicated by the small squares, near to the point under investigation,
the blue circle (the 13,740th point in the published dataset). The lower

left panel (b) shows the regularized covariance matrix used in LSC.
The lower right panel (c) shows the correlation coefficient between the
input data and the predicted value—indicated by the asterisk dashed red
curve (should be gradually decreasing with increase in the distance)

potential ∂T
∂n , namely,

(5)

−
˚

p

�Tdxdydz � −
∑

q∈N (p)

¨

epq

∇T · �ndσ

� −
∑

q∈N (p)

¨

epq

∂T

∂n
dσ � 0,

where N (p) denotes all direct neighbors of the finite volume
p and epq is a boundary of the finite volume p common with
its neighboring finite volume q, −→n is the unit outer normal
to the boundary epq . To obtain the FVM numerical scheme,

the normal derivative is approximated by ∂T
∂n ≈ Tq−Tp

dpq
and

dσ � mpq , where mpq is the area of epq and dpq denotes
the distance between the centers of finite volumes p and q.
In this way, the following equation is established for every

finite element p.

(6)

−
∑

q ∈Np

Tq − Tp

dpq
m

(
epq

) �
∑

q∈Np

m
(
epq

)

dpq

(
Tp − Tq

)

� 0,

where
m(epq)
dpq

is referred to as a transmissivity coefficient
(Eymard et al. 2000). By denoting these transmissivity coef-
ficients in the cardinal directions,we obtain the linear system
of equations that can be written in the form

(7)

Pi , j , kTi , j , k − Wi , j , kTi−1, j , k − Ei , j , kTi+1, j , k

− Ni , j , kTi , j+1, k − Si , j , kTi , j−1, k

−Ui , j , kTi , j , k+1 − Di , j , kTi , j , k−1 � 0,

where W , E , N , S, U , D are the transmissivity coefficients
on the “west, east, north, south, up and down" sides of
the finite volumes p, while i � 1, . . . , n1, j � 1 . . . n2,
k � 1 . . . n3 and n1, n2 and n3 stand for the number of divi-
sions in the longitudinal, latitudinal and height directions,
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Fig. 4 The cleaned data point in the target area (Deleted points are indicated by the black squares. The histogram shows the gravity anomalies that
are normally distributed with a no zero mean value, ~ 19 mGal, and a rather large standard deviation, ~ 40 mGal)

respectively. The diagonal coefficient P is obtained from the
relation

Pi , j , k � Wi , j , k + Ei , j , k + Ni , j , k + Si , j , k +Ui , j , k + Di , j , k .

(8)

The exact formulas of how to calculate the transmissivity
coefficients W , E , N , S, U , D are derived in Minarechová
et al. (2015).

Before solving this linear system of equations, the bound-
ary conditions (BCs) have to be taken into account. In case
disturbing potential T is directly prescribed on the corre-
sponding boundary. In case of the Neumann BC, the gravity

disturbance, δg is prescribed. Afterward, the linear system
of equations can be solved, which results in the disturbing
potential obtained in the whole 3D computational domain.

The input gravity disturbances implemented on the bottom
boundary as the Neumann BC (Fig. 1) directly correspond to
thefluxes. This benefit is one of the reasonswhy it is natural to
apply the FVM to the solution of the BVPs with the Laplace
equation and the Neumann BC. In general, the FVM is a con-
servative method because the flux entering a given volume is
identical to that leaving the adjacent volume. Another advan-
tage of the FVM is its ability to accommodate unstructured
meshes, making it particularly appealing for computational
fluid dynamics. More details about solving the GBVP with
the Neumann BC can be found in Minarechová et al. (2015).
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Table 1 Summary of the statistics of values in Figs. 4, 5, 6, 7, 8 and 11a

Figures Mean SD Min Max Quantity (units)

4 18.85 39.58 − 87.92 211.78 �g (mGal)

5 − 5.10 17.08 − 111.05 82.60 δg − δgXGgeoid22re f A
2190 (mGal)

6 1.93 5.81 − 38.56 37.06 δg − δgXGgeoid22re f A
2190 − δgRT M (mGal)

7 − 253.971 42.93 − 340.47 − 126.38 �gCBA (mGal)

8a 12.95 43.84 − 100.89 316.80 δg (mGal)

8b 12.03 40.71 − 102.63 203.51 δg (mGal)

8c 12.69 40.40 − 92.95 202.89 δg (mGal)

8d 12.92 38.61 − 81.66 158.80 δg (mGal)

11a 0.00 0.00 − 0.01 0.01 T 2190
EGM2008 − T 360

EGM2008 (m
2/s2)

3 Numerical tests of FVM to reconstruct
EGM2008

In this section, simulated data synthesized from EGM2008
(Pavlis et al. 2012) demonstrate the effects when the upper
boundary is set at different altitudes. The full model (up to
degree and order (d/o) 2190) is used at various boundaries to
illustrate the effects of the placements of the upper boundary
on the final solution. The selected study area is in the Col-
orado testing bed (Wang et al. 2021), with latitude ranges
from 37 degrees North to 40 degrees North; longitude ranges
from 251 to 258 degrees. On the bottom boundary of the 3D
computational domain (Fig. 1), the surface gravity distur-
bances are prescribed. From the mathematical point of view,
they represent the oblique derivative BC; however, for struc-
tured meshes they can be simplified into the Neumann BC
(Minarechová et al. 2015). On the rest of the domain bound-
ary, the disturbing potential as the Dirichlet BC is taken into
account. In this way, the FVM solutions are fixed to the pre-
scribed disturbing potential on the upper and side boundaries.

While fixing the lower boundary on the surface of the
topography, three upper boundaries are considered at 250 km,
100 km and 10 km, respectively. The FVM approach is used
to solve each of them separately. The corresponding solu-
tions, in terms of the disturbing potential T, are compared
with the “true” values synthesized directly from EGM2008
to have a rigorous closed-loop check. The root mean squared
errors (T FVM − T EGM2008), denoted as numerical preci-
sions, as a function of altitudes are shown in Fig. 2.

Figure 2 shows that the numerical precisions of the FVM
models can be significantly improved when the upper BC
data move closer to the local topography. This is because
when the upper boundary is moved closer to the lower
boundary, the entire domain size is reduced. The ratio of
the number of prescribed boundary conditions to the num-
ber of unknowns increases, making the field much easier
to determine. However, increasing the discretization beyond

Fig. 5 Residual gravity disturbances after removing the reference field
XGeoid22refA (up to d/o 2190) for method 1 (Histogram shows no zero
mean and a slightly left skewed tail)

the spatial resolution of the simulated field does not signif-
icantly improve the numerical precision. For instance, the
synthesized field used here is based on EGM2008, which
has a spatial resolution of 5 arc-minutes. Using a denser dis-
cretization, such as a 1 arc-min grid, yields numerical results
that are identical to those obtained with a 5 arc-min grid, as
illustrated by the black dashed curve in Fig. 2. Consequently,
the black dashed curve aligns exactly with the red curve in
Fig. 2.

4 Real data application

Equation (1) shows that a global gravity anomaly grid is
needed in order to determine a geoid model. However, it
is impossible to measure gravity everywhere required for
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Fig. 6 Residual gravity disturbances after removing the reference field
XGeoid22refA (up to d/o 2190) and the RTM effect for method 2 (His-
togram shows a near-zeromean-valued normal distribution with amuch
smaller standard deviation)

Fig. 7 The complete Bouguer anomalies for method 3 (Histogram does
not show a clear normal distribution. And the bias is rather large)

high-resolution geoid determinations. Thus, various satellite
missions and airborne campaigns were carried out to provide
gravity data coverage. However, please note, they can only
make contributions in the middle to low degree part, say n <
� 720 in Eq. (1)—the Stokes’s kernel has to be modified to
best combine them (Li and Wang 2011). Thus, surface grav-
ity data are still very useful in studying the short wavelength
features of the local gravity field, specially below 30 km

wavelength. In this sense, surface gravity data are indispens-
able during high-resolution geoid model computation; not
further expounded.

4.1 Input gravity data

The Colorado test data published by the National Geode-
tic Survey, NOAA, USA (Van Westrum et al. 2021; Wang
et al. 2021) are used to test the performance of the FVM
method. First, the surface dataset is cleaned using the RTM
(residual terrain model, Forsberg 1984) residual checking
method (Denker et al. 2009; Denker 2015). The essential
idea of this method is to use the residual RTM values in a
leave-one-out fashion to compare with its neighbor values.
If the differences exceed a certain threshold (here an exper-
imentally determined value, 40 mGal, is used), the data are
believed to have problems and removed from the dataset.
For example, Fig. 3 shows that the 13,740th point (the blue
circle in Fig. 3) in the published dataset has over 100 mGal
differences compared with the values derived from its nearby
observations.

In Fig. 3, about 40 nearby points around the inspection
point (the 13,740th point in the published dataset, shown by
the blue circle) are used to estimate their RTM residual using
LSC with a regularized covariance matrix (Xu 1992; Xu &
Rummel 1994). The LSC estimated value, indicated by the
green star symbol in Fig. 3, shows over 100 mGal differ-
ence to the observed value, which surpassed the threshold
of 40 mGal. Thus, this point is removed from the list. This
algorithm is applied to all of the datasets to avoid artifacts.
Please note that this procedure must be used cautiously due
to unbalanced data distributions, i.e., it cannot be fully auto-
matic (Denker 2015). Thus, it is a rather tedious process. The
final cleaned data in the target area are shown in Fig. 4 with
statistics shown in Table 1.

In principle, the FVM method can work directly with the
scattered data. However, it is usually better to grid the data
first to ease the programming difficulties. Thus, three dif-
ferent algorithms are tested to grid the scattered points on
the idea that a smoother field is easier to make accurate
interpolation. Thus, they are all based on the technique of
remove–compute–restore. The main differences are on the
remove–restore part. The first method only removes a refer-
encemodel, xGeoid22refA, a spherical harmonicmodel up to
d/o 2190 (Li et al. 2019),without considering the topographic
effect explicitly. The second one removes both the reference
model and the effect of the RTM (Forsberg 1984) to smooth
the residuals further. The last one computes the complete
Bouguer anomalies or disturbances for interpolation, which
is commonly used in physical geodesy and geophysics, for
example, to reconstruct gravity data on the topography, c.f.
(Minarechová et al. 2021) or (Čunderlík et al. 2023).
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Fig. 8 Gravity disturbance grids from three methods (method 1 upper left (a), method 2 upper right (b), method 3 lower left (c)) and the first estimate
synthesized from the reference model (lower right (d))

For methods 1 and 2, the cleaned gravity anoma-
lies are first transformed into gravity disturbances using
xGeoid22refA geoid values. After removing xGeoid22refA
gravity disturbances, the residuals (δg−δgre f2−2190) are shown
in Fig. 5. With a mean bias of −5.10 mGal, the residuals
also have 17.08 mGal standard deviation, shown in Table 1.
For gridding method 1, these residuals are directly used as
input without specifically handling the topographical effect.
For gridding method 2, the residuals are further smoothed
by subtracting the RTM effect (Lin & Li 2022). The final
residuals, i.e., δg − δgre f2−2190 − δgRT M , are shown in Fig. 6
with statistics shown in Table 1. It is clear that after further

removing the RTM effects, the residuals are much smoother
(standard deviation dropped from 17.08 mGal to 5.81 mGal)
and advantageous to interpolation from scattering points to
a regular grid. For method 3, the complete Bouguer anoma-
lies, �gCBA, are first computed using the TopoSK software
(Zahorec et al. 2017) and shown inFig. 7with statistics shown
in Table 1. Afterward, they are transformed to complete
Bouguer disturbances. (Remark: In this case, the conven-
tional LSC cannot be used to grid the data, because LSC
is based on the ergodic assumption. Apparently, the com-
plete Bouguer gravity disturbances are not ergodic. Thus,
the TopoSK software is employed).
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Fig. 9 Two profiles were extracted from Fig. 8. The first one is from north to south along a longitude of 254 degrees (a). The other one is from west
to east along latitude 38.5 degrees (b)

After the removal step, each of the three residual sets is
gridded into a regular grid. Then, the corresponding restore
step is used to obtain the final gravity disturbance grid on
the earth’s surface. For method 1, XGeoid22refA is used
to synthesize on the grid points and restored; for method
2, both XGeoid22refA and RTM are restored; for method
3, the complete Bouguer effect is restored. Figure 8 shows
the gridding results along with the reference grid up to d/o
2190, the preponderance feature of the local gravity field.
Two profiles are extracted from the grids to better view the
details as well as their differences. The first one is from north
to south along a longitude of 254 degrees. The other one is
from west to east along latitude 38.5 degrees. The profiles
are shown in Fig. 9.

The grids and the extracted profiles shown in Figs. 8 and 9
are similar, figuratively speaking, especially in the flat areas.
However, method 1 tends to have more significant omission
errors in mountainous regions due to unbalanced data distri-
butions (e.g., from 38.5 to 39 degrees in profile 1).Methods 2
and 3 relieved the problems by forward modeling the terrain
effects, and their results are converging.

The published MS05 airborne gravity data are gridded
similarly in the mean flight height (Li 2021; Li et al. 2022).
These gridded data at altitude of 6000m are used as the upper
BC.

4.2 FVM solutions for different input grids

Together with the lower BCs (three different cases), the FVM
approach is applied to solve the local 3D gravity field (a res-
olution of the 3D computational mesh and computational
details are summarized later in Table 2). The disturbing

potential obtained on the topography is converted to height
anomalies and compared with the GNSS/Leveling data pub-
lished by Van Westrum et al., (2021). Figure 10 shows the
differences between the modeled height anomalies and the
observed ones for all three cases, where the bias due to the
datum error has been removed for a better view; see Li et al.
(2022) for a more detailed discussion.

Through the comparison, we notice that method 2—mod-
eling terrain using the RTMmethod—yields the best solution
for the GNSS/Leveling comparison. The nominally used
complete Bouguer method provides similar results.

For completeness, the results from the RTM geoid mod-
eling method—the currently operational geoid computation
method (Li et al. 2019)—are also shown in Fig. 10. Com-
pared with the results of this classical method, the FVM
results are similar most of time, except from 100 to 150 km in
the along-track direction, where the topography profile has
a quick elevation change. Overall, the classical method per-
forms about 4 mm better than the FVMmethod, which is not
significant, statistically speaking.

Furthermore, the disturbing potential generated at 230 km
from the GO_CONS_GCF_2_DIR_R6 model (DIR6) (Bru-
insma et al. 2014) is also used as the upperBC to showcase the
benefit of using airborne data in the actual dataset scenario.
The corresponding GNSS/Leveling comparison is shown by
the black curve in Fig. 10.Unsurprisingly, the precision could
not be better than that of the counterparts using airborne data
as the upper BCs. Please note, directly using the satellite-
only models at 6 km as the upper boundary condition will
lead to excruciating errors due to the omission errors in these
satellite-only GGM, as shown later in this section.
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Table 2 Computational aspects of the FVM solutions for different altitudes of the upper boundary

Altitude of
the upper
boundary
(km)

On the upper boundary fixed to Mesh size Spacing (lat × long ×
height) (m)

Memory
coasts
(GB)

Total CPU time (h)

230 satellite-only GGM (DIR6) 3196 × 1496 × 1140 0.0033333 × 0.0025 × 200 522 40.4

100 satellite-only GGM (DIR6) 3196 × 1496 × 980 0.0033333 × 0.0025 × 100 449 40.9

50 satellite-only GGM (DIR6) 3196 × 1496 × 960 0.0033333 × 0.0025 × 50 440 31.6

6 airborne gravimetry (GRAV-D) 3196 × 1496 × 800 0.0033333 × 0.0025 × 5 372 19.0

Fig. 10 The height anomalies
differences of the FVM models
along the GSVS17 route

4.3 Altitude of the upper boundary and its impact
on the FVM solutions

The benefit of using airborne data as the upper boundary con-
dition has been demonstrated through simulated and actual
data. A natural follow-up question is how to handle areas
lacking airborne gravity data. Do we have to set the upper
boundary at 250 kmon the satellite orbit altitude? Canwe use
the satellite models directly at 6 km? To answer these ques-
tions, we simulated the disturbing potential from EGM2008
(d/o 2190) and EGM2008 (d/o 360) at the same grids on dif-
ferent levels of altitudes, ranging from the topography to the
250 km with steps of 100 m. For example, Fig. 11 shows
their differences at 100 km height. Their differences are at
mm-level. As such, we propose moving the upper boundary
from 250 to 100 km in case no airborne data can be used.

Higher than 100 km, the high-resolution models converge to
the low-resolution models; see Fig. 11b.

To confirm this finding, we have again performed the
numerical experiment with the actual data by lowering
the upper boundary from 230 to 100 km and 50 km,
respectively. In all cases, the disturbing potential on the
upper boundary is generated from the satellite-only model
GO_CONS_GCF_2_DIR_R6 up to d/o 300. On the bottom
boundary, the surface gravity disturbances from the GRID3
are considered (Fig. 8 lower left). Lowering of the upper
boundary allows us to reduce memory costs by the factor 2.3
and 4.6, respectively. However, we have rather decided to
decrease a radial size of the finite volumes from 200 m into
100 m and 50 m, respectively, and in this way to reduce the
error of the discretization.
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Fig. 11 Disturbing potential differences at 100 km altitude (left (a)); disturbing potential differences between low-resolution and high-resolution
models at different altitudes (right (b))

Table 2 describes computational aspects for all 3 cases
as well as for the previous case fixed at 6 km by the air-
borne gravimetry. Figure 12 depicts differences between the
disturbing potential obtained on the topography and one gen-
erated from the EIGEN-6C4 model up to d/o 2190 (Förste
et al. 2014). It is clear that lowering the upper boundary does
help to minimize the differences, especially large negative
differences in north-western part (Fig. 12a–c). However, an
impact of omission errors starts to increase in case of the
upper boundary at 50 km which causes slight ‘waves’ with
amplitudes about 0.5 m2/s2 (≈ 5 cm) visible in Fig. 12c. This
impact vanishes when using the airborne gravity data as the
boundary conditions at altitude of 6 km (Fig. 12d).

However, if the satellite-only GGM is used directly at the
airborne altitude, say 6 km, it will cause up to dm-level errors,
which is shown in Fig. 13. Thus, due to the well-known
omission errors, it is not recommended to directly use the
satellite-only models at the airborne flight altitude for high-
resolution geoid modeling.

4.4 An extra application in a flat area

Finally, we applied the FVMGRAV-D approach to theGSVS11
area, which is a rather flat area located in Southern Texas. The
height anomaly comparison at the GNSS/Leveling bench-
marks, provided by Smith et al. (2013), is shown in Fig. 14.
Compared with the counterparts from the RTMgeoidmodel-
ing approach (Li et al. 2019), the results are very similar, only

2 mm (well within the GNSS/Leveling error budget) differ-
ences in the standard deviations. Through these comparisons,
we conclude that the FVM approach provides an efficient
numerical option to utilize airborne gravity data for local
gravity field computation without heavy regularizations or
complicated spectrum manipulations that are common rou-
tines needed in classical methods.

5 Discussion

The results presented in this study underscore the signif-
icant advancements made in addressing the GBVP using
FVM, particularly in the context of airborne gravity data. Our
findings demonstrate that strategically lowering the upper
boundary condition (BC) to 10 km or even 100 km enhances
the precision of geoid modeling while also reducing compu-
tational demands. This is particularly relevant as we navigate
the challenges posed by the downward continuation problem,
traditionally exacerbated by the radial ratio term in classical
methods.

The comparative analysis between the FVM approach and
classical techniques reveals several critical insights. First, the
simulation results indicate a clear advantage in numerical
precision when the upper boundary is brought closer to the
local topography. The relationship between the position of
the upper BC and the number of prescribed boundary con-
ditions is pivotal; as the upper BC is lowered, the volume
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Fig. 12 Differences between the obtained disturbing potential on the topography and EIGEN-6C4 for different altitude of the upper boundary
a 230 km, b 100 km, c 50 km and d 6 km (fixed by airborne gravimetry)

of the computational domain decreases, increasing the ratio
of known boundary conditions to unknowns. This change
significantly simplifies the problem, leading to improved
convergence and accuracy in the final models.

Furthermore, the application of the FVM approach to real
datasets, particularly in challenging topographies like Col-
orado, reinforces its robustness. The results highlight how
traditionalmethodsmay strugglewith unbalanced data distri-
butions inmountainous regions, leading to potential omission
errors. Our findings suggest that utilizing RTM to mitigate
these effects is beneficial, with the RTM approach yielding
comparable results to the complete Bouguer method. This
convergence is reassuring, as it suggests that both methods
can effectivelymodel local gravity fields, albeitwith different
underlying assumptions and approaches.

Another crucial aspect is the careful data quality checks
applied throughout our study. The rigorous cleaning of the
gravity data using residual terrain models is essential in
ensuring that the final models accurately reflect the local
gravity field. This tedious but necessary process exemplifies
the commitment to data integrity.

As we consider areas lacking airborne data, our study’s
findings encourage a reevaluation of the upper BC place-
ment. Lowering the upper BC to 100 km appears to be a
feasible compromise, preserving accuracy while addressing
computational constraints. The simulations demonstrate that
at this altitude, the convergence of high-resolution models
to lower-resolution models can be achieved without substan-
tial precision loss, thus providing a viable pathway for geoid
modeling in airborne free regions.
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Fig. 13 Differences between the obtained disturbing potential on the topography and EIGEN-6C4 when fixing the upper boundary at 6 km by
directly using DIR6 (left (a)) or GOCO06s (right (b)) (Kvas et al. 2021)

Fig. 14 Height anomaly errors at
the GSVS11 benchmarks from
both the FVMGRAV-D approach
and the classical RTM geoid
modeling method

In conclusion, the FVM approach presents a powerful
alternative for solving the GBVP in physical geodesy, par-
ticularly with the increasing availability of airborne gravity
data. The integration of this method offers not only improved
precision in local gravity field computations but also a
reduction in the computational burdens. Future research
may explore further enhancements to the FVM framework,
including adaptive meshing techniques and optimization

algorithms, to continue refining geoid modeling efforts in
diverse geophysical contexts.

6 Summary

Analytical methodologies for addressing GBVPs in physi-
cal geodesy, particularly those encountering the inevitable
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downward continuation problem, are essential, as evidenced
by the radial ratio term being exponentially magnified by
the spherical harmonic degree. FVM provides a numerical
tool to solve GBVPs without specifically handling this irri-
tating radial-related term. Given that all the U.S. are covered
with uniformly distributed airborne gravity data, this creates
an ideal scenario for applying the FVM approach. This is
especially true in the study area with relatively good surface
gravity data, as the recently successful Colorado experiment
proved. The much-lowered upper BC provided by the air-
borne data also significantly relieved its peevish computation
costs. Both simulated data and actual data demonstrate the
precision improvements by lowering the upper BC from the
satellite altitude to the flight level of the airborne gravime-
try. A holistic data quality check is applied to every surface
gravity observation to ensure their authenticity in represent-
ing the local gravity field, albeit it is a rather tedious process.
Three removal strategies are applied to mitigate the omission
errors caused by unbalanced data distributions in the surface
data. Numerical tests show that both the RTM approach and
the complete Bouguer method yield similar results. For areas
without airborne gravimetry coverage, numerical tests show
that lowering the upper BC to 100 km will not significantly
decrease the precision if saving computation cost is a must.
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MinarechováZ,MacákM, ČunderlíkRet al (2021)On thefinite element
method for solving the oblique derivative boundary value problems
and its application in local gravity field modeling. J Geod. https://
doi.org/10.1007/s00190-021-01522-8

Moritz H (1980) Advanced physical geodesy. H. Wichmann Verlag,
Karlsruhe

Pavlis NK, Holmes SA, Kenyon S, Factor JK (2012) The development
and evaluation of the earth gravitational model 2008 (EGM2008).
J Geophys Res Solid Earth 117(B4):B04406

Reddy JN (2006) An introduction to the finite element method, 3rd edn.
McGraw-Hill Education, New York

Schmidt M, Fengler M, Mayer-Guerr T, Eicker A, Kusche J, Sanchez
L, Han SC (2007) Regional gravity field modeling in terms of
spherical base functions. J Geod 81(1):17–38. https://doi.org/10.
1007/s00190-006-0101-5

Sjöberg LE, Abrehdary M (2023) Geoid or quasi-geoid? A short
comparison. In: International association of geodesy symposia.
Springer, Berlin. https://doi.org/10.1007/1345_2023_199

Smith DA, Holmes SA, Li X, Guillaume Y, Wang YM, Brki B, Roman
DR, Damiani TM (2013) Confirming regional 1 cm differential
geoid accuracy from airborne gravimetry: the Geoid Slope Vali-
dation Survey of 2011. J Geod 87(1012):885–907. https://doi.org/
10.1007/s00190-013-0653-0

Tscherning CC, Rapp RH (1974) Closed covariance expressions for
gravity anomalies, geoid undulations, and deflections of the ver-
tical implied by anomaly degree-variance models. In: Reports of
the department of geodetic science No. 208. The Ohio State Uni-
versity, Columbus

Wang Y, Sánchez L, Ågren J, Huang J, Forsberg R, Abd-Elmotaal HA,
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