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SOLVING THE GRADIOMETRIC BOUNDARY VALUE PROBLEM
BY THE FINITE ELEMENT METHOD∗

MAREK MACÁK , KAROL MIKULA , ZUZANA MINARECHOVÁ , AND RÓBERT

ČUNDERLÍK †

Abstract. We present an innovative numerical approach for gravity field modelling where the
second derivatives of disturbing potential measured at the level of satellite orbits can be directly
taken into account. To that goal, we create the computational domain bounded by the chosen region
on the Earth’s surface, corresponding boundary at the level of chosen satellites and additional four
side boundaries. The boundary value problem consists of the Laplace equation for the unknown
disturbing potential accompanied by the first derivatives of the disturbing potential given on the
approximation of the Earth’s surface, the second derivatives of the disturbing potential, e.g. from
the GOCE measurements, given on the upper boundary away from the Earth, and the disturbing
potential given on four side boundaries. To solve such a problem, we have derived the numerical
scheme based on the finite element and the finite difference methods. We test its order of convergence
by one theoretical experiment, and then we present gravity field modelling in Europe using EGM2008
data.

Key words. The second-order vertical (radial) potential derivatives as boundary conditions,
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1. Introduction. Modeling the Earth’s gravity field using gradiometry data has
been of interest for many researchers, see, e.g., R. Rummel and O. L. Colombo [22],
Holota [10], Tscherning et al. [25], Brovelli et al. [4], Luo [14], Eshagh [6], Šprlák et
al. [24] or Novák et al. [19], and references therein. In our approach, we will apply the
finite element method (FEM), see Brenner and Scott [3] or Reddy [21], for solving the
gradiometric boundary value problem (BVP). The FEM has been applied to gravity
field modelling for the first time by Meissl [17] and Shaofeng and Dingbo [23], and
later by Fašková et al. [7, 8]. Recently, Yin and Sneeuw published an approach
to the gravitational field modelling by using CFD (Computational Fluid Dynamics)
techniques [26], and Macák et al. [15] and Minarechová et al. [18] applied the FEM
approaches for solving the oblique derivative BVP in local domains.

In this paper, we continue in our previous studies [7, 8, 15, 18], but instead of the
Dirichlet BC prescribed at the satellites orbits we suppose the second-order vertical
(radial) disturbing potential derivatives. Our main motivation for this change is to
use the filtered satellite gradiometry data directly measured by the mission GOCE,
see, e.g., [5]. To derive the numerical scheme, we implement the FEM with the finite
difference method (FDM). Finally, we present a numerical experiment with EGM2008
in the Europe.
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2. Formulation of the BVP. Let us consider the fixed gravimetric boundary
value problem, cf. [12, 2, 11]:

∆T (x) = 0, x ∈ Ω, (2.1)

∇T (x) · s(x) = −δg(x), x ∈ S, (2.2)

T (x) → 0, as |x| → ∞, (2.3)

where Ω is defined as R3−S, S is the Earth, T (x) is the disturbing potential defined as
a difference between the real and normal gravity potential at any point x = (x, y, z),
δg(x) is the gravity disturbance, and the vector s(x) = −∇U(x)/|∇U(x)| is the
unit vector normal to the equipotential surface of the normal potential U(x) at any
point x. Eqs. (2.1) - (2.3) represent an exterior BVP for the Laplace equation, where
the computational domain lies outside the Earth and is infinite.

Fig. 2.1. The computational domain Ω bounded the bottom boundary ΓB with applied oblique
derivative BC, the four side boundaries ΓS with the Dirichlet BC and the upper boundary ΓU where
the second-order vertical derivatives of the disturbing potential are prescribed.

In our approach, we construct a bounded domain Ω (Fig. 2.1) in the external
space above the Earth, see [7, 8]. Such a domain Ω is bounded by the bottom surface
ΓB ⊂ ∂Ω representing a part of the Earth’s surface, a corresponding upper surface
ΓU ⊂ ∂Ω created at appropriate altitude, e.g., at a mean altitude of the Gravity
Field and Steady-State Ocean Circulation Explorer (GOCE) mission, see, e.g., [9],
and artificial side boundaries ΓS ⊂ ∂Ω. Then in the bounded domain Ω, we consider
the following BVP

∆T (x) = 0, x ∈ Ω ⊂ R3, (2.4)

∇T (x) · s(x) = −δg(x), x ∈ ΓB ⊂ ∂Ω, (2.5)

∂2T (x)

∂n2
= Tzz(SAT )(x), x ∈ ΓU ⊂ ∂Ω, (2.6)

T (x) = TSAT (x), x ∈ ΓS ⊂ ∂Ω, (2.7)

where δg(x) are measured surface gravity disturbances, Tzz(SAT ) is given in the local
Cartesian coordinate system with an origin located at the actual satellite center of
mass and of which the x-axis points to the north, the y-axis to the east and the z-axis
radially outwards, and TSAT is the disturbing potential generated from a satellite-only
global geopotential model based on the spherical harmonics.
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3. Solution to the BVP by the FEM. In our approach, we follow the fun-
damental principles of FEM published by Reddy in [21].

3.1. Discretization of the computational domain. The FEM assumes dis-
cretization of the whole computational domain Ω by a union of elements Ωe, e =
1, ...,N , where N denotes the number of elements in the domain Ω. Since our compu-
tations include the real Earth’s surface and we approximate it by a series of triangles,
we choose pentahedral elements with triangular base, see e.g. [16].
We divide the computational domain Ω into n1, n2, n3 divisions in latitudinal, lon-
gitudinal and vertical (radial) direction, respectively, to create the spherical prisms -
tesseroids. Then we diagonally cut each tesseroid to create (2 × n1) × (2 × n2) × n3
triangular prisms, i.e., pentahedral elements. To specify the position of an element
Ωe we use indexes k, l, m, where k = 1, ..., 2n1, l = 1, ..., 2n2 and m = 1, ..., n3.

3.2. Derivation of the weak formulation on the element. Let us consider
an arbitrary element Ωe from our finite element distretization. We multiply the differ-
ential equation (2.1) by a weight function w and using Green’s identity (we omit (x)
to simplify the notation in the following equations) we obtain the weak formulation
of (2.1) over an above defined element Ωe, e = 1, ...,N∫

Ωe

∇T · ∇w dxdydz =

∫
∂Ωe

∇T · nw dσ, (3.1)

where n denotes the unit normal to ∂Ωe.

Since on the bottom boundary Γ the oblique derivative BC (2.5) is prescribed,
for the row of elements that lie on this boundary, i.e., k = 1, ..., 2n1, l = 1, ..., 2n2
and m = 1, we modify (3.1) in the following way. We split the oblique vector s into
one normal and two tangential components

s = c1n+ c2t1 + c3t2, (3.2)

where n is the normal vector and t1, t2 are tangent vectors to Γe ⊂ ∂Ωe ⊂ R3, where
Γe denotes the bottom boundary of an element Ωe.
Then we replace vector s in (2.5) by (3.2) to obtain

∇T · s = c1∇T · n+ c2∇T · t1 + c3∇T · t2 = −δg. (3.3)

From (3.3) we express the normal derivative

∇T · n =
−δg
c1

− c2
c1

∂T

∂t1
− c3
c1

∂T

∂t2
, (3.4)

where we assume that c1 ̸= 0.
Now, we insert (3.4) to (3.1) to get∫

Ωe

∇T · ∇w dxdydz =

=

∫
Γe

(
−δg
c1

− c2
c1

∂T

∂t1
− c3
c1

∂T

∂t2

)
w dσ +

∫
∂Ωe\Γe

∇T · nw dσ. (3.5)
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After some rearrangement, we have∫
Ωe

∇T · ∇w dxdydz +
c2
c1

∫
Γe

∂T

∂t1
w dσ +

c3
c1

∫
Γe

∂T

∂t2
w dσ =

=

∫
Γe

−δg
c1

w dσ +

∫
∂Ωe\Γe

∇T · nw dσ. (3.6)

In this way, we have obtained the weak formulation (3.1) or (3.6) of the BVP (2.1) -
(2.3) on every element Ωe. The study of weak solution of the oblique derivative BVP
is included in the book by Lieberman [13].

3.3. Solution by the Finite Element Method. For a pentahedral element
Ωe with six nodes, we can write

T ≈ T e =

6∑
j=1

T e
j ψj(x, y, z), (3.7)

i.e. we take an approximation of the unknown value T as T e, a linear combination
of basis functions ψj with coefficients T e

j , j = 1, ..., 6. Then we substitute it into the
weak formulation (3.1) for elements Ωe with indexes k = 1, ..., 2n1, l = 1, ..., 2n2 and
m = 2, ..., n3, and consider ψi for weight function w. We obtain the ith equation in
the form

6∑
j=1

T e
j

∫
Ωe

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz =

=

6∑
j=1

∫
∂Ωe

qn ψi dxdy, (3.8)

where qn = ∇T · n denotes the projection of the vector ∇T along the unit normal n.
For the row of elements Ωe given by indexes k = 1, ..., 2n1, l = 1, ..., 2n2 and

m = 1, we follow the same way and after inserting (3.7) into (3.6) and considering
w = ψi, we obtain the ith equation in the form

6∑
j=1

T e
j

 ∫
Ωe

∂ψj

∂x

∂ψi

∂x
+
∂ψj

∂y

∂ψi

∂y
+
∂ψj

∂z

∂ψi

∂z
dxdydz

+

+

3∑
j=1

T e
j

 c2
c1

∫
Γe

∂ψj

∂t1
ψi dxdy +

c3
c1

∫
Γe

∂ψj

∂t2
ψi dxdy

 =

=

3∑
j=1

∫
Γe

−δgj
c1

ψi dxdy +

6∑
j=1

∫
∂Ωe\Γe

qn ψi dxdy, (3.9)

where the index j = 1, ..., 3 refers to nodes of the element Ωe that lie on the bottom
boundary Γ of the computational domain Ω. As we can see in Eq. (3.9), there are
2 tangent vectors corresponding to the nodes lying on the bottom boundary of the
element belonging to Γ.
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Now we can write (3.8) and (3.9) in a compact matrix form

Ke Te = Qe, (3.10)

where Ke = [Kij ] denotes an element stiffness matrix, Te = (T1, ..., T8) is a column
vector of unknowns and Qe denote the right-hand side vector.

To evaluate element matrices and vectors we proceed as follows. We choose one
basis function ψi per vertex Ne

i . Then the function ψi is uniquely determined by
choosing value 1 at Ne

i and 0 at every Ne
j , i ̸= j, and we differentiate the basis

functions with respect to a position of each node in Cartesian coordinates. For more
details about basis functions see, e.g., [21] or [3]. To calculate two integrals over
a boundary Γe in Eq. (3.9) which include a tangential derivative, we approximate
derivatives in tangential direction like in the FDM, i.e. using values of basis functions
at nodes Ni of element e we have

∂ψ
(e)
j

∂t1
≈

ψ
(e)
j (N2)− ψ

(e)
j (N1)

d(N1, N2)
, (3.11)

∂ψ
(e)
j

∂t2
≈

ψ
(e)
j (N3)− ψ

(e)
j (N1)

d(N1, N3)
, (3.12)

where d denotes the distance between two neighbouring nodes.

3.4. Assembly of element equations. We assemble all element equations by
using two principles:

(i) continuity of primary variables at the interelement nodes. It means that nodal
values T e

j and T e+1
j of two adjacent elements Ωe and Ωe+1 at the connecting

nodes have to be the same.
(ii) ”equilibrium” or ”balance” equations of secondary variables at the interface

between two elements. It means that on portions of ∂Ωe that are in the
interior of the domain Ω, the value qen on the side p of the element Ωe cancels
with the value qe+1

n on the side r of the element Ωe+1 when sides p of the
element Ωe and r of the element Ωe+1 are the same.

In this way we have obtained the global linear system of equations with a column
vector of unknown global nodal values T

KT = Q, (3.13)

where the matrix K is sparse, since most of its entries are zero and positive definite,
and the column vector Q whose entries are also almost zero except for the nodes with
prescribed oblique derivative BC (2.5).

3.5. Implementing the second derivatives. Finally, we implement the sec-
ond derivatives Tzz(SAT )(x) in Eq. (2.6). In order not to reduce the accuracy of the
above-defined approach, we use a second-order accurate approximation with 4-points
backward differences (see Fig. 3.1)

∂2T

∂n2
≈ 2Tn3

− 5Tn3−1 + 4Tn3−2 − Tn3−3

d2
, (3.14)

where d denotes the distance between two neighbouring nodes and Tn3−i numerical
solution at them. We add these equations to (3.13) and solve the linear system of
equations.
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Fig. 3.1. Illustration of the numerical scheme for the approximation of the second radial deriva-
tives given at nodes on the upper boundary ΓU using 4-points backward differences, where values
Tn3−i denote approximation of the solution T at corresponding nodes Nn3−i and d denotes the
distance between two neighbouring nodes.

4. Numerical experiments. In the numerical experiments, we test the stabil-
ity and behaviour of the numerical scheme given by (3.8) - (3.14) by investigating its
Experimental Order of Convergence (EOC), and then we perform experiments with
gravity data generated from EGM2008.

4.1. Theoretical numerical experiments. In the first experiment, the com-
putational domain was a tesseroid bounded by [1, 2] × [0, π2 ] × [π4 ,

3π
4 ]. The exact

solution and the Dirichlet BC applied on the side boundary was given as T (x) = 1/r.

The Neumann BC prescribed on the bottom boundary was ∂T (x)
∂r = −1/r2 and on

the upper spherical boundary we have ∂2T (x)
∂r2 = 2

r3 . The statistics of residuals for
successive refinements of the grid can be seen in Table 4.1. For a comparison we also
present the solution with the Dirichlet BC applied on the upper boundary, see Ta-
ble 4.1 the first row. Although the L2(Ω) norm is better in the case of the experiment
with Dirichlet BC, L2(ΓB) norm is very similar, and both approaches are of second
order, see the EOC columns.

BC on ΓU No. of nodes L2(Ω) Norm EOC L2(ΓB) Norm EOC

D
ir
ic
h
le
t

4x4x4 0.002046 - 0.000267 -
8x8x8 0.000370 2.465 0.000063 2.075

16x16x16 0.000074 2.324 0.000015 2.113
32x32x32 0.000016 2.184 0.000003 2.074
64x64x64 0.000004 2.096 0.000001 2.041

S
ec
on

d
d
er
iv
at
iv
e 4x4x4 0.016362 - 0.000188 -

8x8x8 0.001325 3.626 0.000051 1.880
16x16x16 0.000223 2.573 0.000012 2.047
32x32x32 0.000047 2.242 0.000003 2.050
64x64x64 0.000011 2.112 0.000001 2.031

Table 4.1
Theoretical numerical experiment: L2 norms and EOC.
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4.2. Continental gravity field modelling in a part of Europe. In the
second experiment, we have chosen a part of Europe bounded by meridians 0 deg
and 30 deg, and parallels 35 deg and 55 deg. To create the bottom boundary we have
used the heights generated from SRTM30 PLUS digital elevation model [1]. The
height of the upper boundary ΓU was at 240 km above the reference ellipsoid which
corresponds to the mean altitude of the GOCE satellites. We have created four
computational grids with the number of nodes n1 × n2 × n3, namely 225× 150× 25,
450 × 300 × 50, 900 × 600 × 100 and 1800 × 1200 × 200, corresponding to resolution
8′ × 8′ × 9.6 km, 4′ × 4′ × 4.8 km, 2′ × 2′ × 2.4 km and 1′ × 1′ × 1.2 km, respectively.
All BCs were generated from global gravitational model EGM2008 based on spherical
harmonics [20]. The obtained numerical solution on ΓB , see Fig. 4.1, was compared
with the disturbing potential generated from EGM2008 directly. Such differences are
depicted in Fig. 4.2 with the corresponding statistics in Tab. 4.2. The differences
on ΓU are depicted in Fig. 4.3 with the statistics of residuals presented in Tab. 4.3.
We have also performed the equivalent numerical experiment with the Dirichlet BC
applied on ΓU and compared this solution with the solution to the BVP (2.4) - (2.7).
These differences are depicted in Fig. 4.4. One can observe a systematic trend in
the differences on the upper boundary ΓU , see Fig. 4.3, which is also obvious on
the bottom boundary ΓB , see Fig. 4.4. As we have expected, this trend is more
dominant on the upper boundary than on the bottom one, and on both boundaries,
it is significantly reduced when refining the computational grid.

Fig. 4.1. The disturbing potential solution T on the bottom boundary ΓB.

No. of elements Min Max Mean Median STD

225× 150× 25 -2.938 7.025 0.009 0.025 0.372
450× 300× 50 -1.217 1.794 0.001 0.020 0.132
900× 600× 100 -0.491 0.386 -0.001 0.015 0.096

1800× 1200× 200 -0.420 0.187 -0.001 0.014 0.093
Table 4.2

Continental gravity field modelling in Europe - statistics of residuals on ΓB.
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a) b)

c) d)

Fig. 4.2. The differences between the numerical solution to the BVP (2.4) - (2.7) and the
disturbing potential generated from EGM2008 directly on the bottom boundary ΓB for grids: a)
225× 150× 25, b) 450× 300× 50, c) 900× 600× 100, d) 1800× 1200× 200.

a) b)

c) d)

Fig. 4.3. The differences between the numerical solution to the BVP (2.4) - (2.7) and the
disturbing potential generated from EGM2008 directly on the upper boundary ΓU for grids: a)
225× 150× 25, b) 450× 300× 50, c) 900× 600× 100, d) 1800× 1200× 200.

5. Summary and conclusions. We have presented a numerical approach to
gravity field modelling where the second-order vertical disturbing potential deriva-
tives applied on the top boundary were taken into account. To derive the numerical
scheme, we have implemented the finite element and the finite difference methods. At
first, the proposed approach has been tested by the experiment on the unit sphere
and we have shown its second order accuracy. We have compared the obtained so-
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a) b)

c) d)

Fig. 4.4. The differences between the numerical solution with the Dirichlet BC applied on ΓU

and the solution to the BVP (2.4) - (2.7) on the bottom boundary ΓB for grids: a) 225× 150× 25,
b) 450× 300× 50, c) 900× 600× 100, d) 1800× 1200× 200.

No. of elements Min Max Mean Median STD

225× 150× 25 -2.938 7.025 0.009 0.025 0.372
450× 300× 50 -0.015 0.040 0.005 0.003 0.011
900× 600× 100 -0.015 0.024 0.001 0.000 0.009

1800× 1200× 200 -0.015 0.022 0.000 0.000 0.009
Table 4.3

Continental gravity field modelling in Europe - statistics of residuals on ΓU .

lution with the solution of the equivalent numerical experiment with the Dirichlet
BC applied on the top boundary. Although the L2 norm of residuals in the whole
domain was better in the case of the experiment with Dirichlet BC, the L2 norm of
residuals on the bottom boundary was very similar. Afterwards, we have performed
an experiment with EGM2008 data. In this case, we have observed a systematic effect
when comparing the obtained solution to the solution of the corresponding experiment
with the Dirichlet BC considered on the top boundary. However, this effect was sig-
nificantly reduced and finally almost vanished while refining the computational grid.
This experiment has shown that with a sufficiently fine grid we are able to obtain the
same quality results on the bottom boundary as when applying the disturbing poten-
tial on the top boundary. In the future, we plan to perform a numerical experiment
using pre-processed filtered data obtained during the last 10 months of the GOCE
mission, and focus on the uniqueness of the solution in this combination of boundary
conditions.
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