Set Difference and Symmetric Difference of Fuzzy Sets

N.R. Vemuri A.S. Hareesh M.S. Srinath

Department of Mathematics Indian Institute of Technology, Hyderabad and Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning, India

Fuzzy Sets Theory and Applications 2014, Liptovský Ján, Slovak Republic

Introduction Earlier work

Outline

- Introduction
- Earlier work
- 2 Symmetric Difference
 - Definition
 - Examples
 - Properties
 - Applications
 - Future Work
 - References

Introduction Earlier work

Classical set theory

Set operations

- Union- \cup
- Intersection -
- Complement ^c
- Difference \setminus
- Symmetric difference Δ
- • • •

(日) (同) (三)

Introduction Earlier work

Classical set theory

Set operations

- o Union- ∪
- Intersection \cap
- Complement ^c
- Difference \setminus
- Symmetric difference Δ
- • • •

(日) (同) (三)

Introduction Earlier work

Classical set theory

Set operations

- o Union- ∪
- Intersection \cap
- Complement ^c

• Difference - \

- Symmetric difference Δ
- • • •

Introduction Earlier work

Classical set theory

Set operations

- o Union- ∪
- Intersection \cap
- Complement ^c
- Difference \setminus

```
• Symmetric difference - \Delta
```

< D > < P > < P > < P >

Introduction Earlier work

Classical set theory

Set operations

- o Union- ∪
- Intersection \cap
- Complement ^c
- Difference \
- Symmetric difference Δ
- • • •

< D > < P > < P > < P >

Introduction Earlier work

Classical set theory

Set operations

- o Union- ∪
- Intersection \cap
- Complement ^c
- Difference \
- Symmetric difference Δ
-

▲ 同 ▶ ▲ 国 ▶

Introduction Earlier work

Classical vs Fuzzy operators

Set operations

Operation	Classical	Fuzzy
Union		<i>t</i> -conorm
Intersection		<i>t</i> -norm
Complement	С	Fuzzy Negation
Set difference		??
Symmetric difference	Δ	??

Table : Classical vs Fuzzy operators

< ロ > < 同 > < 回 > <

-

Introduction Earlier work

Classical vs Fuzzy operators

Set operations

Operation	Classical	Fuzzy
Union		<i>t</i> -conorm
Intersection		<i>t</i> -norm
Complement		Fuzzy Negation
Set difference		
Symmetric difference	Δ	

Table : Classical vs Fuzzy operators

< /□ > <

Introduction Earlier work

Classical vs Fuzzy operators

Set operations

Operation	Classical	Fuzzy
Union	U	<i>t</i> -conorm
Intersection	\cap	<i>t</i> -norm
Complement	с	Fuzzy Negation
Set difference	\	??
Symmetric difference	Δ	??

Table : Classical vs Fuzzy operators

< 一型

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

$$A \setminus B = \{a \in A | a \notin B\}$$

Equivalent definition

$$A \setminus B = A \cap B^c$$

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

 $A \setminus B = \{a \in A | a \notin B\}$

Equivalent definition

$$A \setminus B = A \cap B^c$$

(日) (同) (三) (

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

 $A \setminus B = \{a \in A | a \notin B\}$

Equivalent definition

$$A \setminus B = A \cap B^c$$

ヘロト ヘヨト ヘヨト ヘ

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

$$A \setminus B = \{a \in A | a \notin B\}$$

Equivalent definition

$$A \setminus B = A \cap B^c$$

< D > < P > < P > < P >

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

$$A \setminus B = \{a \in A | a \notin B\}$$

Equivalent definition

$$A \setminus B = A \cap B^c$$

▲ 同 ▶ ▲ 国 ▶

Introduction Earlier work

Difference of (classical)sets

Set difference

The set difference of A, B is defined as

$$A \setminus B = \{a \in A | a \notin B\}$$

Equivalent definition

$$A \setminus B = A \cap B^c$$

▲ 同 ▶ ▲ 国 ▶

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Equivalent defintion

 $A\Delta B = (A \cap B^c) \cup (B \cap A^c)$

・ロト ・同ト ・ヨト ・

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

 $A\Delta B = (A \setminus B) \cup (B \setminus A)$

Equivalent defintion

 $A\Delta B = (A \cap B^c) \cup (B \cap A^c)$

(日) (同) (三) (

Vemuri, Sai Hareesh & Srinath Symmetric Difference

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

 $A\Delta B = (A \setminus B) \cup (B \setminus A)$

Equivalent defintion

 $A\Delta B = (A \cap B^c) \cup (B \cap A^c)$

(日) (同) (三) (

Vemuri, Sai Hareesh & Srinath Symmetric Difference

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Equivalent defintion

 $A\Delta B = (A \cap B^c) \cup (B \cap A^c)$

(日) (同) (三) (

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Equivalent defintion

 $A\Delta B = (A \cap B^c) \cup (B \cap A^c)$

(日) (同) (三) (

Vemuri, Sai Hareesh & Srinath Symmetric Difference

Introduction Earlier work

Symmetric Difference of (classical)sets

Symmetric difference

The symmetric difference of two sets A, B is defined as

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

Equivalent defintion

$$A\Delta B = (A \cap B^c) \cup (B \cap A^c)$$

▲ 同 ▶ ▲ 国 ▶

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

$$S_{d_1}(x,y) = T(x,N(y))$$
(1)

$$S_{d_2}(x,y) = x - T(x,y)$$

< ロ > < 同 > < 回 > <

where T, N are a t-norm and a fuzzy negation, resp.

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

$$S_{d_1}(x,y) = T(x,N(y))$$

$$S_{d_2}(x,y) = x - T(x,y)$$

where T, N are a t-norm and a fuzzy negation, resp.

Symmetric difference of fuzzy sets ??

A B > A B > A

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

 $S_{d_1}(x,y) = T(x,N(y))$

$$S_{d_2}(x,y) = x - T(x,y)$$

where T, N are a t-norm and a fuzzy negation, resp.

Symmetric difference of fuzzy sets ??

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

$$S_{d_1}(x,y) = T(x,N(y))$$
(1)

A B > A B > A

$$S_{d_2}(x,y) = x - T(x,y)$$

where T, N are a t-norm and a fuzzy negation, resp.

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

$$S_{d_1}(x,y) = T(x,N(y))$$
(1)

$$S_{d_2}(x,y) = x - T(x,y)$$
⁽²⁾

A B > A B > A

where T, N are a t-norm and a fuzzy negation, resp.

Introduction Earlier work

Generalisations of Difference operators

Definition

The difference of two fuzzy sets can be defined as

$$S_{d_1}(x,y) = T(x,N(y))$$
(1)

$$S_{d_2}(x,y) = x - T(x,y)$$
 (2)

where T, N are a t-norm and a fuzzy negation, resp.

Introduction Earlier work

Outline

- 2 Symmetric Difference
 - Definition
 - Examples
 - Properties
 - Applications
 - Future Work
 - References

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

•
$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

< ロ > < 同 > < 回 > <

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

•
$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

•
$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

•
$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

(日)

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

< D > < P > < P > < P >

Introduction Earlier work

Dubois and Prade (1980)

Two Examples

•
$$S_1(x,y) = |x-y|$$

$$S_2(x,y) = \max(\min(x,1-y),\min(1-x,y))$$

Note

- S_1, S_2 are only examples of fXoR operators
- No axiomatic definition was proposed.

< ロ > < 同 > < 回 > <
Alsina et.al. (2005)

Definition

 $\begin{array}{l} \Delta \colon [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if} \\ (A1) \ \Delta(a,0) = \Delta(0,a) = a \\ (A2) \ \Delta(a,a) = 0 \\ (A3) \ \Delta(a,1) = \Delta(1,a) = N(a), \text{ where } N \text{ is a strong negation.} \end{array}$

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ $(A1) \quad \Delta(a,0) = \Delta(0,a) = a$ $(A2) \quad \Delta(a,a) = 0$ $(A3) \quad \Delta(a,1) = \Delta(1,a) = N(a), \text{ where } N \text{ is a strong negation.}$

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.
- $S_2(a, a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

Drawbacks

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.

• $S_2(a,a) \neq 0$.

Introduction Earlier work

Alsina et.al. (2005)

Definition

 $\Delta: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (A1) $\Delta(a,0) = \Delta(0,a) = a$ (A2) $\Delta(a,a) = 0$ (A3) $\Delta(a,1) = \Delta(1,a) = N(a)$, where N is a strong negation.

- Δ is not commutative
- N is a strong negation
- Not general enough to accomodate known fXoR operators.

•
$$S_2(a,a) \neq 0$$

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (B1) E(a,b) = E(b,a) (B2) E(a,E(b,c)) = E(E(a,b),c) (B3) E(0,a) = a (B4) E(1,1) = 0.

Drawbacks

- Most of the fXoR operators do not satisfy associativity
- Not general enough to accomodate many fXoR operators

・ロト ・同ト ・ヨト ・

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ $(B1) \quad E(a,b) = E(b,a)$ $(B2) \quad E(a,E(b,c)) = E(E(a,b),c)$ $(B3) \quad E(0,a) = a$ $(B4) \quad E(1,1) = 0.$

Drawbacks

- Most of the fXoR operators do not satisfy associativity
- Not general enough to accomodate many fXoR operators

(日) (同) (三) (

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (B1) E(a,b) = E(b,a) (B2) E(a,E(b,c)) = E(E(a,b),c) (B3) E(0,a) = a (B4) E(1,1) = 0.

Drawbacks

- Most of the fXoR operators do not satisfy associativity
- Not general enough to accomodate many fXoR operators

(日) (同) (三) (

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ (B1) E(a,b) = E(b,a)(B2) E(a,E(b,c)) = E(E(a,b),c)(B3) E(0,a) = a(B4) E(1,1) = 0.

Drawbacks

- Most of the fXoR operators do not satisfy associativity
- Not general enough to accomodate many fXoR operators

< 日 > < 同 > < 三 > <

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ $(B1) \quad E(a,b) = E(b,a)$ $(B2) \quad E(a,E(b,c)) = E(E(a,b),c)$ $(B3) \quad E(0,a) = a$ $(B4) \quad E(1,1) = 0.$

Drawbacks

Most of the fXoR operators do not satisfy associativity

Not general enough to accomodate many fXoR operators

(日) (同) (三) (三)

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ $(B1) \quad E(a,b) = E(b,a)$ $(B2) \quad E(a,E(b,c)) = E(E(a,b),c)$ $(B3) \quad E(0,a) = a$ $(B4) \quad E(1,1) = 0.$

Drawbacks

Most of the fXoR operators do not satisfy associativity

Not general enough to accomodate many fXoR operators

イロト イポト イヨト イヨト

Introduction Earlier work

Bedregal et.al. (2009)

Definition

 $E: [0,1]^2 \longrightarrow [0,1] \text{ is called a symmetric difference operator if}$ $(B1) \quad E(a,b) = E(b,a)$ $(B2) \quad E(a,E(b,c)) = E(E(a,b),c)$ $(B3) \quad E(0,a) = a$ $(B4) \quad E(1,1) = 0.$

Drawbacks

- Most of the fXoR operators do not satisfy associativity
- Not general enough to accomodate many fXoR operators

くロト く得ト くヨト くヨトー

Introduction Earlier work

fXoR operators - some Generalisations

Table : Various fXoR operators

(日) (同) (三) (

Introduction Earlier work

fXoR operators - some Generalisations

Table : Various fXoR operators

・ロト ・ 同ト ・ ヨト ・

Introduction Earlier work

Properties of D_i

D_i and the violated axioms

	Alsina .et.al	Bedregal. <i>et.al.</i>
D_1	A2	<i>B</i> 2
D_2	A2, A3	<i>B</i> 2
D_3	A2, A3	B2
D_4	A2, A3	B2
D_5	A2	B2

Table : Violated properties of D_i operators

・ロト ・ 同ト ・ ヨト ・

Introduction Earlier work

Properties of D_i

D_i and the violated axioms

	Alsina .et.al	Bedregal. <i>et.al.</i>
D_1	A2	<i>B</i> 2
D_2	A2, A3	<i>B</i> 2
D_3	A2, A3	<i>B</i> 2
D_4	A2, A3	<i>B</i> 2
D_5	A2	<i>B</i> 2

Table : Violated properties of D_i operators

< ロ > < 同 > < 回 > <

Introduction Earlier work

Properties of D_i

D_i and the violated axioms

	Alsina <i>.et.al</i>	Bedregal. <i>et.al.</i>
D_1	A2	B2
D_2	A2, A3	B2
<i>D</i> ₃	A2, A3	B2
D_4	A2, A3	B2
D_5	A2	B2

Table : Violated properties of D_i operators

A B > A B > A

Definition Examples Properties

Properties Applications Future Work References

Outline

Preliminaries

- Introduction
- Earlier work
- 2 Symmetric Difference
 - Definition
 - Examples
 - Properties
 - Applications
 - Future Work
 - References

Definition Examples Properties Applications Future Work References

Definition 1

 $D \colon [0,1]^2 o [0,1]$ is called an fXoR operator if for all $x,\ y \in [0,1]$ it satisfies:

(i)
$$D(x, y) = D(y, x)$$
,
(ii) $D(0, x) = x$,
(iii) $D(1, x) = N(x)$ where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

< D > < P > < P > < P >

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i)
$$D(x, y) = D(y, x)$$
,
(ii) $D(0, x) = x$,
(iii) $D(1, x) = N(x)$ where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

< D > < P > < P > < P >

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i)
$$D(x,y) = D(y,x)$$
,
(ii) $D(0,x) = x$,
(iii) $D(1,x) = N(x)$ where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i)
$$D(x, y) = D(y, x)$$
,
(ii) $D(0, x) = x$,
(iii) $D(1, x) = N(x)$ where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

< D > < P > < P > < P >

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i) D(x, y) = D(y, x), (ii) D(0, x) = x, (iii) D(1, x) = N(x) where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

(日) (同) (三) (

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i) D(x, y) = D(y, x), (ii) D(0, x) = x, (iii) D(1, x) = N(x) where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

(日) (同) (三) (

3.5

Definition Examples Properties Applications Future Work References

Definition 1

 $D: [0,1]^2 \rightarrow [0,1]$ is called an **fXoR** operator if for all $x, y \in [0,1]$ it satisfies:

(i) D(x, y) = D(y, x), (ii) D(0, x) = x, (iii) D(1, x) = N(x) where N is a fuzzy negation.

Theorem

 D_i satisfies Definition 1, for i = 1, 2, 3, 4, 5.

Definition Examples Properties Applications Future Work References

Outline

Preliminaries

- Introduction
- Earlier work
- 2 Symmetric Difference
 - Definition

Examples

- Properties
- Applications
- Future Work
- References

Definition Examples Properties Applications Future Work References

Figures

Case 1: Consider $T = \min$, $S = \max$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 1. **Case 2:** when $T = T_{LK}$, $S = S_P$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 2.

(日) (同) (三) (

Definition Examples Properties Applications Future Work References

Figures

Case 1: Consider $T = \min$, $S = \max$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 1. **Case 2:** when $T = T_{LK}$, $S = S_P$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 2.

(日) (同) (三) (

Definition Examples Properties Applications Future Work References

Figures

Case 1: Consider $T = \min$, $S = \max$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 1. **Case 2:** when $T = T_{LK}$, $S = S_P$ and N(x) = 1 - x, then $D_1 - x$ are shown in Fig. 2.

Definition Examples Properties Applications Future Work References

Figures

Case 1: Consider $T = \min$, $S = \max$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 1. **Case 2:** when $T = T_{LK}$, $S = S_P$ and N(x) = 1 - x, then $D_1 - D_5$ are shown in Fig. 2.

< ロ > < 同 > < 回 > <

Definition Examples Properties Applications Future Work References

D3,D4 when T=min, S=max and N=1-x

Figure : (a) D_1 , D_5 (b) D_2 (c) D_3 , D_4 , when $T = T_M$, $S = S_M$ and $S = S_M$ and $S = S_M$ and $S = S_M$

Definition Examples Properties Applications Future Work References

Figure : (a) D_1 (b) D_2 (c) D_3 (d) D_4 (e) D_5 , when $T = T_{LK}$, $S = S_P$ and N(x) = 1 - x

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Definition Examples **Properties** Applications Future Work References

Outline

Preliminaries

- Introduction
- Earlier work

2 Symmetric Difference

- Definition
- Examples

Properties

- Applications
- Future Work
- References
Definition Examples **Properties** Applications Future Work References

Properties of fXoR operators

Classical $A \Delta B$	fXoR
$A\Delta(B\Delta C) = (A\Delta B)\Delta C$	D(x, D(y, z)) = D(D(x, y), z)
$A \Delta A = \emptyset$	D(x,x) = 0
$A\Delta B = A^c \Delta B^c$	D(x, y) = D(N(x), N(y))
$(X \Delta A)^c = X \Delta A$	D(1,y) is strong negation
$A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$	T(x, D(y, z)) = D(T(x, y), T(x, z))

Table : Various operators

э

(日) (同) (三) (

Definition Examples **Properties** Applications Future Work References

Properties of fXoR operators

Classical $A\Delta B$	fXoR
$A\Delta(B\Delta C) = (A\Delta B)\Delta C$	D(x, D(y, z)) = D(D(x, y), z)
$A\Delta A = \emptyset$	D(x,x) = 0
$A\Delta B = A^c \Delta B^c$	D(x, y) = D(N(x), N(y))
$(X \Delta A)^c = X \Delta A$	D(1,y) is strong negation
$A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$	T(x, D(y, z)) = D(T(x, y), T(x, z))

Table : Various operators

э

< ロ > < 同 > < 回 > <

Definition Examples **Properties** Applications Future Work References

Properties of fXOR operators

Property	D_1	D_2	D_3	D_4	D_5
Commutativity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Associativity	×	×	×	×	×
D(0,x) = x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
D(1,x) = D(x,1)	1-x	N(x)	N(x)	N(x)	1-x
D(N(x), N(y)) = D(x, y)	×	×	\times	×	×
D(x,x)=0	×	×	×	×	×
Distributivity w.r.t T	\times	×	\times	\times	\times
$D(x,y) = 1 \Rightarrow x-y = 1$	×	×	\times	×	×
Conditional Monotonicity	\checkmark	×	\checkmark	×	×

Table : Properties vs Various operators

э

Definition Examples **Properties** Applications Future Work References

Properties of fXOR operators

Property	D_1	<i>D</i> ₂	<i>D</i> ₃	D_4	D_5
Commutativity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Associativity	×	×	×	×	×
D(0,x) = x	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
D(1,x) = D(x,1)	1-x	N(x)	N(x)	N(x)	1-x
D(N(x), N(y)) = D(x, y)	×	×	×	×	×
D(x,x)=0	×	×	×	×	×
Distributivity w.r.t T	×	×	×	×	×
$D(x,y) = 1 \Rightarrow x-y = 1$	×	×	×	×	×
Conditional Monotonicity	\checkmark	×	\checkmark	×	×

Table : Properties vs Various operators

Definition Examples **Properties** Applications Future Work References

More Properties

Definition

Given $x, y, z \in [0, 1]$, fXoR operator D is said to satisfy

(i) (CP) Cancellative Property if D(x, y) = D(x, z) then y = z.

- (ii) (EP) Exchange Principle if D(x, y) = z then D(y, z) = x and D(x, z) = y.
- (iii) (COP) Coincidence Principle if $D(x, y) = 0 \Leftrightarrow x = y$.
- (iv) (DT) Delta transitivity if D(D(x, y), D(y, z)) = D(x, z).
- (v) (SP) Subset Principle if $x \le y$ then $D(x, y) = S_d(y, x)$ where $d = d_1$ or d_2

Definition Examples Properties Applications Future Work References

More Properties

Definition

Given $x, y, z \in [0, 1]$, fXoR operator D is said to satisfy

- (i) (CP) Cancellative Property if D(x, y) = D(x, z) then y = z.
 (ii) (EP) Exchange Principle if D(x, y) = z then D(y, z) = x and D(x, z) = y.
- (iii) (COP) Coincidence Principle if $D(x, y) = 0 \Leftrightarrow x = y$.
- (iv) (DT) Delta transitivity if D(D(x, y), D(y, z)) = D(x, z).
- (v) (SP) Subset Principle if $x \leq y$ then $D(x,y) = S_d(y,x)$ where $d = d_1$ or d_2

(日) (同) (三) (

Definition Examples **Properties** Applications Future Work References

More Properties

Definition

Given $x, y, z \in [0, 1]$, fXoR operator D is said to satisfy

- (i) (CP) Cancellative Property if D(x, y) = D(x, z) then y = z.
- (ii) (EP) Exchange Principle if D(x, y) = z then D(y, z) = x and D(x, z) = y.
- (iii) (COP) Coincidence Principle if $D(x, y) = 0 \Leftrightarrow x = y$.
- (iv) (DT) Delta transitivity if D(D(x, y), D(y, z)) = D(x, z).
- (v) (SP) Subset Principle if $x \leq y$ then $D(x,y) = S_d(y,x)$ where $d = d_1$ or d_2

(日) (同) (三) (三)

Definition Examples **Properties** Applications Future Work References

Few relationships

Figure : Some of the relationships between the different properties

Vemuri, Sai Hareesh & Srinath Symmetric Difference

Definition Examples **Properties** Applications Future Work References

Few relationships

Figure : Some of the relationships between the different properties

Vemuri, Sai Hareesh & Srinath Symmetric Difference

Definition Examples Properties Applications Future Work References

Outline

Preliminaries

- Introduction
- Earlier work

2 Symmetric Difference

- Definition
- Examples
- Properties
- Applications
- Future Work
- References

Definition Examples Properties Applications Future Work References

Applications

- Fuzzy XoR function is constructed and is used to extract edges from grayscale images [1].
- In [2], Pedrycz et.al., developed a logic-based architecture of fuzzy neural networks, called here fXoR networks using basic fuzzy operations such as Fuzzy Negation, t-norm and t-conorm.
- Commonly used preference formation rules in psychology and marketing using linear models is given in [3]. The interaction term with the linear models includes counterbalance (fXoR).

Definition Examples Properties Applications Future Work References

Applications

- Fuzzy XoR function is constructed and is used to extract edges from grayscale images [1].
- In [2], Pedrycz et.al., developed a logic-based architecture of fuzzy neural networks, called here fXoR networks using basic fuzzy operations such as Fuzzy Negation, t-norm and t-conorm.
- Commonly used preference formation rules in psychology and marketing using linear models is given in [3]. The interaction term with the linear models includes counterbalance (fXoR).

< 口 > < 同

Definition Examples Properties Applications Future Work References

Applications

- Fuzzy XoR function is constructed and is used to extract edges from grayscale images [1].
- In [2], Pedrycz et.al., developed a logic-based architecture of fuzzy neural networks, called here fXoR networks using basic fuzzy operations such as Fuzzy Negation, t-norm and t-conorm.
- Commonly used preference formation rules in psychology and marketing using linear models is given in [3]. The interaction term with the linear models includes counterbalance (fXoR).

A B > A B > A

Definition Examples Properties Applications Future Work References

Applications

- Fuzzy XoR function is constructed and is used to extract edges from grayscale images [1].
- In [2], Pedrycz et.al., developed a logic-based architecture of fuzzy neural networks, called here fXoR networks using basic fuzzy operations such as Fuzzy Negation, t-norm and t-conorm.
- Commonly used preference formation rules in psychology and marketing using linear models is given in [3]. The interaction term with the linear models includes counterbalance (fXoR).

• • • • • • • •

Definition Examples Properties Applications Future Work References

Applications

- Properties of x + y 2xy is studied in [4] and it is found that the operation is least sensitive (Most Robust) on average.
- Fuzzy XoR dataset was used to compare the performance of Fuzzy Clustering lagorithms namely Fuzzy C-Means (FCM), Gustafson-Kessel FCM, and Kernel-based FCM in [5].
- Classical connective XoR is frequently used as a problem, as, e.g., in Neural Networks, in support vector machines (SVM) and Quantum Computing due to its non-linearity.

Definition Examples Properties Applications Future Work References

Applications

- Properties of x + y 2xy is studied in [4] and it is found that the operation is least sensitive (Most Robust) on average.
- Fuzzy XoR dataset was used to compare the performance of Fuzzy Clustering lagorithms namely Fuzzy C-Means (FCM), Gustafson-Kessel FCM, and Kernel-based FCM in [5].
- Classical connective XoR is frequently used as a problem, as, e.g., in Neural Networks, in support vector machines (SVM) and Quantum Computing due to its non-linearity.

Definition Examples Properties Applications Future Work References

Applications

- Properties of x + y 2xy is studied in [4] and it is found that the operation is least sensitive (Most Robust) on average.
- Fuzzy XoR dataset was used to compare the performance of Fuzzy Clustering lagorithms namely Fuzzy C-Means (FCM), Gustafson-Kessel FCM, and Kernel-based FCM in [5].
- Classical connective XoR is frequently used as a problem, as, e.g., in Neural Networks, in support vector machines (SVM) and Quantum Computing due to its non-linearity.

• □ ▶ • • □ ▶ • • □ ▶

Definition Examples Properties Applications **Future Work** References

Outline

Preliminaries

- Introduction
- Earlier work

2 Symmetric Difference

- Definition
- Examples
- Properties
- Applications
- Future Work
- References

Definition Examples Properties Applications **Future Work** References

Future Work

To study...

- All the properties of families in detail
- Intersection between the families
- Characterization of different families

< D > < P > < P > < P >

э

Definition Examples Properties Applications **Future Work** References

Future Work

To study...

- All the properties of families in detail
- Intersection between the families
- Characterization of different families

< D > < P > < P > < P >

э

Definition Examples Properties Applications **Future Work** References

Future Work

To study...

- All the properties of families in detail
- Intersection between the families
- Characterization of different families

< ロ > < 同 > < 回 > <

Definition Examples Properties Applications **Future Work** References

Future Work

To study...

- All the properties of families in detail
- Intersection between the families
- Characterization of different families

< ロ > < 同 > < 回 > <

Definition Examples Properties Applications **Future Work** References

Future Work

To study...

- All the properties of families in detail
- Intersection between the families
- Characterization of different families

Definition Examples Properties Applications **Future Work** References

- A general definition of fXoR operator was given.
- Some Families of fXoR operators were proposed.
- Inter-relationships among the properties of fXoR operators was studied.

Definition Examples Properties Applications **Future Work** References

• A general definition of fXoR operator was given.

• Some Families of fXoR operators were proposed.

 Inter-relationships among the properties of fXoR operators was studied.

< / □ > <

Definition Examples Properties Applications **Future Work** References

- A general definition of fXoR operator was given.
- Some Families of fXoR operators were proposed.
- Inter-relationships among the properties of fXoR operators was studied.

A B > A B > A

Definition Examples Properties Applications **Future Work** References

- A general definition of fXoR operator was given.
- Some Families of fXoR operators were proposed.
- Inter-relationships among the properties of fXoR operators was studied.

< 口 > < 同

Definition Examples Properties Applications Future Work **References**

Outline

Preliminaries

- Introduction
- Earlier work

2 Symmetric Difference

- Definition
- Examples
- Properties
- Applications
- Future Work
- References

Definition References

- F. M. Bayat, S. B. Shoukari, Memristive fuzzy edge detector, Journal of Real-time Image Processing.
- Pedrycz, W.and G.Succi, fxor fuzzy logic networks, Soft Computing 7 (2002) 115-120.
- Carl F. Mela and Donald R. Lehmann, Using fuzzy set theoretic techniques to identify preference rules from interactions in the linear model: an empirical study, Fuzzy Sets and Systems 71 (1995) 165–181.
- Hernandez J.E. and Nava. J. Least sensitive(most robust) fuzzy "exclusive or" operations, in: Annual Meeting of the North American Fuzzy Information Processing Society, 2011.
- D. Graves, W. Pedrycz, Analysis and Design of Intelligent Systems using Soft Computing Techniques, Vol. 41 of

Definition Examples Properties Applications Future Work **References**

Advances in Soft COmputing, Springer, 2007, Ch. Fuzzy C-Means, Gustafson-Kessel FCM, and Kernel-Based FCM: A Comparitive Study, pp. 140–149.

< D > < P > < P > < P >

Preliminaries Symmetric Difference Preliminaries Definition Examples Properties Applications Future Work References

Thank you!!!

Questions???

Vemuri, Sai Hareesh & Srinath Symmetric Difference

▲□▶ ▲圖▶ ▲厘▶

문 문 문

Preliminaries Symmetric Difference	Definition Examples Properties Applications Future Work References

Thank you!!!

Questions???

Vemuri, Sai Hareesh & Srinath Symmetric Difference

æ