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Abstract The goal of this paper is to present the finite
element scheme for solving the Earth potential problems
in 3D domains above the Earth surface. To that goal we
formulate the boundary-value problem (BVP) consisting of
the Laplace equation outside the Earth accompanied by the
Neumann as well as the Dirichlet boundary conditions (BC).
The 3D computational domain consists of the bottom bound-
ary in the form of a spherical approximation or real tri-
angulation of the Earth’s surface on which surface gravity
disturbances are given. We introduce additional upper (spher-
ical) and side (planar and conical) boundaries where the
Dirichlet BC is given. Solution of such elliptic BVP is under-
stood in a weak sense, it always exists and is unique and can
be efficiently found by the finite element method (FEM). We
briefly present derivation of FEM for such type of problems
including main discretization ideas. This method leads to a
solution of the sparse symmetric linear systems which give
the Earth’s potential solution in every discrete node of the 3D
computational domain. In this point our method differs from
other numerical approaches, e.g. boundary element method
(BEM) where the potential is sought on a hypersurface only.
We apply and test FEM in various situations. First, we com-
pare the FEM solution with the known exact solution in case
of homogeneous sphere. Then, we solve the geodetic BVP in
continental scale using the DNSC08 data. We compare the
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results with the EGM2008 geopotential model. Finally, we
study the precision of our solution by the GPS/levelling test
in Slovakia where we use terrestrial gravimetric measure-
ments as input data. All tests show qualitative and quantita-
tive agreement with the given solutions.
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1 Introduction

Nowadays, an importance and efficiency of numerical
methods have rapidly increased with the development of
high-performance computing (HPC) facilities. With numeri-
cal methods we are able to get numerical solutions of physical
problems described by partial differential equations (PDE)
in complicated 3D geometries. A solution of the external
geodetic boundary-value problem (BVP) is an important
theoretical and practical issue in geodesy and needs in-
depth tools and methods of applied mathematics. At pres-
ent, the global gravity field modelling is mainly performed
by spherical harmonics and precise local modelling by the
FFT-based methods (e.g. Sideris and Schwarz 1986) and the
geodetic collocation (e.g. Tscherning 1978). From numeri-
cal methods, the boundary element method (BEM) has been
recently used by various groups to determine Earth’s grav-
ity field (e.g. Klees 1992, 1995, 1998; Klees et al. 2001;
Lehmann 1977, 1997; Čunderlík et al. 2000; Čunderlík 2004;
Čunderlík et al. 2008). The variational method based on
a weak formulation and minimization of a function was
developed in Holota and Nesvadba (2008) and Nesvadba
et al. (2007). In case of the finite element method (FEM),
the pioneering work has been done by Meissl (1981) and
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Shaofeng and Dingbo (1991). The goal of this paper is to
present the finite element technique for the solution of the
Earth potential problems related to physical geodesy in 3D
domains.

At present, thanks to the precise 3D positioning by GNSS
that accompanies gravimetric measurements, more attention
has been focused on the fixed gravimetric BVP. Here, the
physical surface of the Earth is assumed to be known. A
uniqueness theorem for a non-linear fixed gravimetric BVP
was first given by Backus (1968). The existence and unique-
ness of the solution for the associated linear problem were
introduced by Koch and Pope (1972). They also gave a
uniqueness proof for the non-linear case. This general prob-
lem was later discussed by Bjerhammar and Svensson (1983),
Sacerdote and Sansó (1989) and Grafarend (1989). Later,
many authors have dealt with the fixed gravimetric BVP (e.g.
Holota 1997, 2005).

In spite of previous approaches, where the solution is usu-
ally sought on a 2D hypersurface given by a sphere, ellipsoid
or the Earth’s surface, here we solve the geodetic BVP in
3D domains above the Earth surface. After discretization it
leads to sparse linear systems which are comparable with full
BEM matrices regarding the computational complexity and
we get directly the Earth’s potential solution in the whole 3D
computational domain.

The FEM assumes the discretization of the domain
by a set of subdomains—the finite elements. In order to
derive the FEM model, a weak formulation of the differ-
ential equation on every element is constructed. Since any
continuous function can be represented by a linear combi-
nation of the algebraic polynomials, a numerical solution is
sought as a linear combination of nodal values and approxi-
mation functions. The balance of the interelement fluxes and
continuity of the numerical solution on interelement bound-
aries are used to assemble the whole solution. Taking into
account the boundary condition (BC), the global linear sys-
tem of equations can be solved. For FEM analysis, we use
the FEM software ANSYS with its 3D 4- and 8-node linear
elements.

In order to obtain the numerical solution to the geodetic
BVP by our approach using FEM, we provide the following
particular tasks. The theoretical formulation of our geodetic
BVP is given, the derivation of FEM model for this prob-
lem and some numerical experiments are described. First, in
case of a potential generated by the homogeneous sphere,
we compare our solution with the known exact solution
to find out the experimental order of convergence (EOC).
Then solving geodetic BVP in global and continental scale
using DNSC08 gravity data, we compare the results with
the EGM2008 (Pavlis et al. 2008) geopotential model.
Finally, we use terrestrial gravimetric measurements as in-
put data and test the precision of our obtained solution by the
GPS/levelling in the area of Slovakia.

Fig. 1 Illustration of the computational domain, the Earth’s surface �1
is approximated by series of triangles

2 Formulation of the geodetic BVP

Let us consider the linearized fixed gravimetric BVP
(cf. Koch and Pope 1972; Holota 1997, 2005; Čunderlík et al.
2008).

−�T (x) = 0, x ∈ R3 − �, (1)

〈∇T (x), s(x)〉 = −δg(x), x ∈ ∂�, (2)

T (x) → 0 as |x | → ∞, (3)

where T (x) is the disturbing potential defined as a dif-
ference between the real W (x) and normal U (x) gravity
potential at any point x under the assumptions discussed in
Holota (1997), δg(x) is the gravity disturbance and s(x) =
∇U (x)/|∇U (x)|.

Although the BVP (1)–(3) deals with the infinite domain,
in our approach using the FEM we construct an artificial
boundary �2 ⊂ ∂� away from the approximate Earth sur-
face (Fig. 1), and due to the giant size of the Earth we restrict
our computations only to a partial domain�depicted in Fig. 1
as well. The bottom surface �1 ⊂ ∂� represents a part of the
Earth surface, given by a sphere (in our global and local quas-
igeoidal solution) or discretized by triangles (regional quas-
igeoidal solution). The surface gravity disturbances in (2)
represent the oblique derivative BC (neglecting the deflection
of the vertical). In order to get the Neumann BC, we project
the oblique derivative BC into the boundary �1, i.e. ∂T (x)

∂n�1
is

approximately equal to −δg(x). cos µ(x), where µ(x) is the
angle � (s̄(x), ¯n�1(x)). It is worth to note that this term rep-
resents the projection of the vector δg(x)s̄(x) (not exactly of
the vector ∇T (x)) to the normal n�1 . In this way, the oblique
derivative BC in (2) is incorporated into our FEM formulation
similarly as it was used for BEM in Čunderlík et al. (2008).
The upper spherical part �2 = {x; |x | = R} of the domain
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represents the artificial boundary where the Dirichlet BC is
prescribed. On the further side planar boundaries �4,6 ⊂ ∂�

and side conical boundaries �3,5 ⊂ ∂�, we use the Dirichlet
BC. Then our geodetic BVP is defined as follows:

−�T (x) = 0, x ∈ �, (4)
∂T (x)

∂n�1

= −δg∗(x) = −δg(x) · cos µ(x),

µ(x) = � (s̄(x), ¯n�1(x)), x ∈ �1 (5)

T (x) = TSAT(x), x ∈ �i , i = 2, . . . , 6, (6)

where TSAT represents the disturbing potential generated
from a satellite geopotential model. The problem (4)–(6) con-
tains both the Neumann and Dirichlet BCs, so we call it the
geodetic BVP with mixed BC.

3 Solution of the geodetic BVP by finite element method

To derive the variational formulation of (4)–(6), we define the
Sobolev space of test functions V , i.e. the space of functions
from W (1)

2 (�) which are equal to 0 on �i , i = 2, . . . , 6, in
the sense of traces. We multiply the differential equation (4)
by v ∈ V and get∫

�

∇T · ∇v dxdydz −
∫

∂�

∇T · n v dσ = 0, ∀v ∈ V . (7)

Let the extension of Dirichlet BC given by TSAT into the
domain � be in W (1)

2 (�) and let δg∗ ∈ L2(�1). Then we
define the weak formulation of our BVP (4)–(6) as follows:
we look for a function T , such that T − TSAT ∈ V and∫

�

∇T · ∇v dxdydz +
∫

�1

δg∗ v dσ = 0, ∀v ∈ V . (8)

Due to Brenner and Scott (2002) or Rektorys (1974), the solu-
tion of this problem always exists and is unique. Moreover,
the finite element approximation described below converges
to the weak solution refining the finite element grid.

The FEM assumes discretization of the domain by a set of
subdomains called the finite elements, cf. Figs. 2 and 3, and
Vh , the finite dimensional subspace of V , corresponding to

Fig. 2 Discretization of 1D domain, basis functions vi (blue dashed
lines) and their linear combination (green dot-and-dash line) that is
piecewise linear

the finite element grid is chosen. In order to complete the dis-
cretization, we must select a basis of Vh . In 1D case (Fig. 2),
for each nodal point xi we will choose the piecewise linear
function vi ∈ V whose value is equal to 1 at xi and zero at
every x j , i �= j, i.e.

vi (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − xi−1

xi − xi−1
if x ∈ [xi−1, xi ],

xi+1 − x

xi+1 − xi
if x ∈ [xi , xi+1],

0 otherwise ,

for i = 1, . . . , n. In the case of 2D and 3D computational
domains, we follow the similar way, i.e. we choose again one
basis function vi per vertex xi . The function vi is uniquely
determined by choosing value 1 at xi and zero at every
x j , i �= j . The plot of such basis functions for triangular
and rectangular 2D finite element grids is given in Fig. 4.

The principal advantage of such piecewise linear basis is
that the inner products

〈vi , v j 〉 =
B∫

A

viv j dx, φ(vi , v j ) =
B∫

A

v′
iv

′
j dx (9)

will be zero for all i, j when holds |i − j | > 1. In 1D case,
the support of vi is the interval [xi−1, xi+1]. Hence, the inte-
grands of 〈vi , v j 〉 and φ(vi , v j ) are identically zero whenever
|i − j | > 1. In the 2D and 3D cases likewise in 1D case, if
xi and x j do not share a common edge of the discretization,

Fig. 3 Example of
discretization of a planar
domain by triangular and
rectangular elements
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Fig. 4 Piecewise linear basis
function on 2D domain
discretized by triangles and
bilinear basis function on 2D
domain discretized by squares

Table 1 Errors for the example
of potential generated by unit
sphere

Table shows that method is
O(h2)—second order accurate
in L2-norm

Experiment A B C

E ‖u − u‖L2(�) EOC ‖u − u‖L2(�) EOC ‖u − u‖L2(�) EOC

23 0.006750 − 0.021179 − 0.005511 −
43 0.001053 2.68 0.004562 2.21 0.001018 2.43

83 0.000187 2.49 0.000989 2.21 0.000180 2.42

163 0.000036 2.37 0.000228 2.11 0.000040 2.29

the integrals

〈vi , v j 〉=
∫

�

viv j dxdydz, φ(vi , v j )=
∫

�

∇vi ·∇v j dxdydz

(10)

are both zero.
If we write T n(x, y, z) = ∑n

j=1 t jv j (x, y, z), i.e. take an
approximation of T as T n , a linear combination of basis func-
tions with coefficients ti , i = 1, . . . , n, plug it into the weak
formulation (8) and consider test function w = vi we get

n∑
j=1

t jφ(vi , v j ) = qi , i = 1, . . . , n. (11)

where qi = − ∫
�1

δg∗vi dσ .
Then let the column vectors (t1, . . . , tn) and (q1, . . . , qn)

be denoted by t and q, respectively, and let K = [Ki j ] be
matrix whose entries are Ki j = φ(vi , v j ). We may rephrase
(11) as

K t = q, (12)

which represents the linear system of equations for unknown
nodal solution values t. The matrix K is usually referred to as
the stiffness matrix which is sparse since most of its entries
are zero and, in addition, the matrix is symmetric and positive
definite.

3.1 Numerical experiments by FEM

In the following section we present various numerical exper-
iments performed by the FEM implemented in the ANSYS
software.1 The first experiment is theoretical to illustrate the
order of accuracy of FEM. We suppose potential u(�,	, R)

1 ANSYS, online tutorial: www.ansys.com.

is generated by a homogeneous sphere with radius R = 1 m.
We solve this problem in a space between R = 1 and 2 m.
Since we know the exact solution, u(�,	, R) = 1/R, we
can easily compute the Dirichlet and Neumann BC. There
is the Neumann BC on the bottom boundary applied in all
experiments. In Experiment A, on upper spherical and on side
boundaries the Dirichlet BC is considered. In experiment B,
on the vertical boundaries the zero Neumann (reflective) BC,
and on the upper spherical boundary the Dirichlet BC are
applied. In the last theoretical experiment denoted by capital
C on the upper spherical boundary the Neumann and on the
side boundaries the Dirichlet BC are considered.

Now let us assume that the error of the scheme in some
norm is proportional to some power of the grid size, i.e.
Error(h) = Chα , with a constant C . Then halving the grid
size we have Error(h/2) = C(h/2)α from where we can sim-
ply extract α = log2(Error(h)/Error(h/2)). The α is called
the EOC and can be determined by comparing numerical
solutions and exact solutions on subsequently refined grids.
One can see that FEM is second order accurate in all theo-
retical experiments (Table 1).

The following numerical experiments deal with the global
gravity field modelling. We have performed computations in
the western and eastern hemispheres with coarse grids—3D
8-node elements 2◦×2◦ and 1◦×1◦ based. As the input BC we
use the DNSC08 gravity anomaly dataset. According to the
authors Andersen et al. (2008), DNSC08_GRAV includes the
altimetry-derived free-air gravity anomalies at oceans/seas
augmented by EGM2008 on lands. Thus, for our purposes we
interpolate the free-air gravity anomalies in the nodes on the
bottom boundary �1 from DNSC08_GRAV and transform
them into the surface gravity disturbances using EGM2008.
As the Dirichlet BC on �i , i = 2, . . . , 6 we use the disturb-
ing potential generated from the ITG-GRACE03S satellite
geopotential model (Mayer-Grr 2007) up to degree 180.
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Fig. 5 Meshed subdomain and
the input gravity disturbances

Fig. 6 Disturbing potential
solution in eastern �1 and
western �2 hemisphere

Table 2 Statistics of the residuals between the global FEM solutions
and EGM2008

Hemisphere Eastern Western Eastern Western

Resolution (◦) 2 × 2 2 × 2 1 × 1 1 × 1

No. of all nodes 44,226 44,226 174,846 174,846

No. of elements 36,000 36,000 144,000 144,000

Min. residual (m) −15.92 −20.16 −9.70 −12.17

Mean residual (m) 0.22 −0.12 0.11 −0.05

Max. residual (m) 20.52 16.60 14.00 7.14

St. dev. (m) 2.20 1.89 1.10 0.93

We consider the space above the sphere of radius R1 =
6,371 km, where the Neumann BC (5) is given, up to the
sphere with radius R2 = 6,871 km, where the Dirichlet BC
(6) is considered. Then the computations were performed
in two subdomains �1 and �2, where �1 : 	 × �1 =
(−80, 80) × (0, 180)◦ and �2 : 	 × �2 = (−80, 80) ×
(180, 360)◦, 	 is spherical latitude and � is spherical lon-
gitude. Afterwards each subdomain has been meshed with
8-node elements, creating five layers (Fig. 5). The FEM out-
put (Fig. 6), being in the form of the disturbing potential as
a nodal solution, has been transformed into the quasigeoidal
heights above the ellipsoid. We have compared this solution
with EGM2008 (Table 2).

The comparison shows that the refinement of the discret-
ization improves a precision of the FEM solution. Namely,
halving the element’s side leads to decreasing of the standard
deviation of the residuals by the factor 2. One can see that the

Table 3 Geometry of computational domains representing different
parts of the world and mesh statistics

Europe North America South America Indonesia

Resolution (◦) 0.2 × 0.2 0.25 × 0.25 0.25 × 0.25 0.25 × 0.25

No. of all
nodes

693,011 620,816 620,816 638,891

No. of
elements

625,000 576,000 576,000 576,000

Sp. latitude 20, 70 20, 60 −50, 10 −30, 30

Sp. longitude 0, 50 230, 290 270, 330 120, 180

mean values, which are in cm, tend to zero, in spite of the fact
that the FEM solution is fixed to ITG-GRACE03S satellite
geopotential model on the upper and side boundaries. We
suppose that the further successive refinement would improve
the precision of the FEM solution. However, it yields to large
memory requirements. Therefore, in the following section,
we restrict our quasigeoidal modelling to smaller areas of the
continental scale.

3.2 Local quasigeoidal modelling

The computational domain is the space between two spheres,
R1 = 6,371 km and R2 = 6,871 km, and spherical coordi-
nates are dependent on the concrete location of computational
domain (Table 3). Afterwards such domains are meshed
with 8-node elements with base 0.25◦ × 0.25◦ except of
Europe where 0.2◦ × 0.2◦-based elements were used. There
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Table 4 Statistics of residuals between the local quasigeoidal solutions
and EGM2008 in different parts of the world

Europe North America South America Indonesia

No. of nodes
on �1

63,001 38,801 38,001 58,081

Min. residual −2.056 −2.123 −4.000 −3.648

Mean residual −0.027 0.020 0.033 0.032

Max. residual 1.496 1.612 5.327 2.888

St. dev. 0.175 0.194 0.355 0.293

are formed about 15 layers in R-direction. The FEM solu-
tion is compared with quasigeoidal heights generated from
EGM2008 (Table 4). Figure 7 depicts the profiles across the
FEM solution, EGM2008 and ITG-GRACE03S in the area
of Europe to illustrate an influence of the prescribed Dirich-
let BC on the FEM solution. It is evident from the profiles

depicted in Fig. 7 that a striping effect as well as eventual bias
of the satellite geopotential model affects the FEM solution
only in very close zones to the side boundaries. They have
practically no impact on the central zones.

3.3 Regional quasigeoidal model

For our regional experiments we have chosen the space above
Slovak Republic. As input data on the bottom boundary we
have used the surface gravity disturbances obtained from
the original terrestrial gravity measurements (Klobušiak and
Pecár 2004) (Fig. 8). The Dirichlet BC on the upper and side
boundaries are generated from EGM2008 up to degree 2,160.
The real Earth’s surface topography has been approximated
by series of triangles sized 10, 8, 7 and 5 km. The upper
boundary has been placed 150 or 200 km above the Earth’s
surface. The results have been tested at 61 GPS/levelling

Fig. 7 Profiles across the
quasigeoidal models in Europe
that show an influence of the
Dirichlet BC on the side
boundaries on the FEM solution

Fig. 8 Surface gravity disturbances computed from detailed gravimetric mapping GrS-95 and the terrain topography in Slovakia
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Table 5 GPS/levelling test at 61 points for the regional quasigeoidal
solutions by FEM with different sizes of approximating triangles, height
of upper boundary: 150 km

Element size 10 km 8 km 7 km 5 km

Min. residual −0.424 −0.394 −0.388 −0.394

Mean residual −0.221 −0.211 −0.223 −0.248

Max. residual 0.051 0.064 −0.022 −0.044

St. deviation 0.100 0.102 0.088 0.078

St. dev. after fitting 0.074 0.068 0.060 0.059

All characteristics are in meter

points. For the fitting process we have chosen the surface
polynomial regression using the second degree polynomial
surface with 6 coefficients (Mojzeš et al. 2006). The resid-
uals after the fitting are depicted in Fig. 11 and statistics of
the residuals are presented in Table 5. The next regional
experiment treats an influence of the upper boundary. We
have chosen the 5 km triangulation and made the computa-
tion with the height of the upper boundary: 250, 200, 150
and 100 km. Then we have computed the residuals between
the GPS/levelling method and our solutions (the first two
rows of Fig. 10). The difference between solutions 250 and
100 km are depicted in the last row of Fig. 10. One can see
a pushing of the detailed character of real data down by the
data on upper spherical boundary which is ineligible con-

sequence of lowering the upper boundary. According to the
GPS/levelling tests for all regional experiments, we summa-
rize:

– refinements of the discretization improve the FEM solu-
tion (Fig. 9 and Table 5),

– standard deviation of the residuals at GPS/levelling
points for the most detailed quasigeoids model (res-
olution 5 km) using original gravity data is 7.8 and
5.9 cm after second-order polynomial fitting (Fig. 9 and
Table 5). Such precision is a little bit worse than the
quasigeoidal model obtained by the FFT-based methods
(7.8 and 3.9 cm after fitting (Mojzeš et al. 2006)) but
slightly better than the BEM solution (17.1 and 6.0 cm
after fitting (Čunderlík et al. 2008)),

– the lowering of the upper spherical boundary with the
input BC from geopotential models pushes the FEM
solution especially local maxima in mountainous regions
(Fig. 10) and

– the influence of the Dirichlet BC on the solution is not
significant when the side boundaries are far enough (sev-
eral elements).

Finally, we mention the following advantages of the proposed
approach for the regional as well as global quasigeoidal mod-
elling.

Fig. 9 Final quasigeoid models
in the area of Slovak Republic
for the different discretization
levels and differences between
them. Height of upper
boundary: 150 km
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Fig. 10 Differences between the FEM solutions and the GPS/levelling method with 5 km discretization and the height of the upper boundary:
100, 150, 200 and 250 km

Fig. 11 GPS/levelling test
residuals after second degree
polynomial fitting

– It is not necessary to integrate over the whole Earth’s
surface only over the domain above the area of interest.

– The Dirichlet BC from satellite geopotential models fix
the FEM solution but their eventual bias and striping
effect do not influence the FEM solution in the central
zones.

– The airborne gravimetric data can be applied as the Neu-
mann BC on the upper boundary.

– Triangulation of the Earth’s surface can be given from
discrete terrestrial gravimetric measurements.

– Local refinement procedures can be applied in areas of
interest.

– The further refinement of the discretization is straight-
forward that can be useful for the global gravity field
modelling especially to model dynamical processes in
the gravity field.
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4 Conclusions

The main goal of this paper was to build the FEM which looks
for the numerical solution in 3D domains above the Earth’s
surface. So we had to formulate the geodetic BVP in the 3D
domain and we considered the Neumann as well as Dirichlet
BCs on different parts of its boundary. On the Earth’s surface
we use the gravity disturbances generated from the DNSC08
altimetry-derived data, the EGM2008 geopotential model or
from original gravity data in the regional experiment. They
represent the oblique derivative BC that are projected into the
Neumann BC. On the artificial upper and side boundaries we
consider the Dirichlet BC generated from ITG-GRACE03S
satellite model.

Consequently, in comparison with the previous app-
roaches, not only the disturbing potential on the Earth’s
surface was an objective of computations but the full 3D solu-
tion was obtained directly. Our numerical method was devel-
oped for spherical domains and also for the part of boundary
given by the real Earth’s surface discretized by series of tri-
angles. Method was successfully applied in different parts
of the world, using different levels of discretization in order
to determine the quasigeoidal heights. Our solutions were
compared with EGM2008 based on spherical harmonics and
in area of Slovakia verified by GPS/levelling test. It is worth
noting that the gained local solutions of continental scale are
in a good agreement with EGM2008. The precision of the
regional quasigeoid model obtained by FEM in the area of
Slovakia when using the original gravity data is compara-
ble with solutions computed by the FFT-based methods. The
results are promising for further investigation.
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Čunderlík R, Mikula K, Mojzeš M (2000) The boundary element
method applied to the determination of the global quasigeoid. Pro-
ceedings of ALGORITMY, pp 301–308
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