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The paper presents the solution to the geodeti
 boundary value problem by the �niteelement method in area of Slovak Republi
. Generally, we have made two numeri
al exper-iments. In the �rst one, Neumann BC in the form of gravity disturban
es generated fromEGM-96 is used and the solution is veri�ed by the quasigeoidal heights generated dire
tlyfrom EGM-96. In the se
ond one, Neumann BC is 
omputed from gravity measurementsand the solution is 
ompared to the quasigeoidal heights obtained by GPS/leveling method.Keywords: �nite element method, geodeti
 boundary value problem, ANSYSAMS Subje
t Classi�
ation: 35Q80, 65N30, 86A301. INTRODUCTIONThe Slovak Republi
 (SR), lo
ated between 47.6 and 49.6 deg north latitude and 16.3and 22.5 deg longitude, is a 
ountry of about 49 000km2 with altitudes varying from100m to 2660m above sea level. Su
h range of altitudes together with great varietyof geologi
al phenomena has led to the magnitudes of gravity anomalies between �25and 130mGal (Gal� 10�2 m� s�2) and terrain 
orre
tions more than 35mGal [10℄.At the present, there exist several models of gravimetri
 quasigeoid in SR butneither one is ultimate. One approa
h uses 
lassi
al methods { Fast Fourier Te
h-niques for numeri
al integration of Stokes Formula (see [9, 10, 11℄), while anotherexplores the Boundary Element Method (BEM) [3, 4, 5, 6℄.Our aim is also to 
ompute the gravimetri
 quasigeoid pre
ise enough to substi-tute the leveling method [17℄. As a method of solution we have 
hosen the FiniteElement Method (FEM). In this paper we present our �rst lo
al solution of gravi-metri
 quasigeoid in the area of the Slovak Republi
.2. DATA SOURCESThere were three types of data used in our 
omputations, i. e., global geopotentialmodel { EGM-96 [8℄, terrestrial gravity data { GrS-95 [7℄ based on 16 absolute gravitypoints and data 
ontaining terrain information { global { SRTM (Shuttle Radar
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al { observation by NAVSTARGlobal positioning system (GPS).3. FORMULATION OF THE GEODETIC BOUNDARY VALUE PROBLEMThe quantity that des
ribes the gravity �eld of the Earth is the gravity potentialW (x), 
onsisting of the gravitational potential Vg(x) generated by the Earth andthe 
entrifugal potential V
(x) arisen from spinning of the Earth. In appli
ations,it is also used an idealized (normal) model of the Earth (usually biaxial geo
entri
equipotential ellipsoid) rotating with the same angular velo
ity as the Earth. Itssurfa
e potential is equal to the potential on geoid (geoid is an equipotential surfa
ewhi
h approximately 
oin
ides with the mean o
ean surfa
e) and its mass is thesame as the mass of the Earth. Then the generated potential is 
alled the normalpotential and denoted U(x). The di�eren
e between the a
tual gravity potential andthis normal potential is 
alled the disturbing potential T (x) [12, 17℄. Negle
ting theatmosphere, the disturbing potential is a harmoni
 fun
tion outside the Earth, i. e.,it satis�es the Lapla
e equation �T (x) = 0 for x 2 R3�E, where E represents theEarth.The development of satellite te
hnologies has brought new opportunities in geodesy.With gravimetri
 and satellite measurements we 
an get the magnitude 
(x) ofthe normal gravity ve
tor ~
(x) as well as the magnitude g(x) of the a
tual grav-ity ~g(x) at the same point. This way we get so-
alled the gravity disturban
eÆg(x) = g(x)� 
(x);x 2 R3.

Fig. 1. Gravity and normal gravity ve
tors, de
e
tion of verti
al.Applying the gradient operator to the de�nition of the disturbing potential weget rT (x) = rW (x) � rU(x) = ~g(x) � ~
(x);x 2 R3. In Figure 1, we plot theequipotential surfa
es U(P ) = 
onst; W (P ) = 
onst that pass through the samepoint P on the Earth surfa
e. There we 
an observe di�eren
es in ve
tors ~
(x) and~g(x) that have the opposite dire
tion to the normal n and plumb line t. The spatial
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h is 
alled the de
e
tion of verti
al, is negligibly small in real situation.In addition, dire
tions of both ve
tors are very 
lose to the opposite dire
tion of theouter normal ne to the ellipsoid. Negle
ting the small angles (whi
h are less thanminute) we 
an proje
t the gradient of the disturbing potential to the Earth normal�n and get hrT (x); �ni = hrW (x); �ni � hrU(x); �ni, whi
h is approximately equalto hrW (x); ti � hrU(x); ni = �g(x) + 
(x) = �Æg(x). This idea has been usedby �Cunderl��k, Mikula, Mojze�s in [3, 4, 5, 6℄, where the Neumann Boundary ValueProblem (BVP) on in�nite domain with a boundary 
ondition given on the Earth'ssurfa
e in the form of gravity disturban
e were suggested and solved numeri
ally bythe BEM.Although the given problem deals with the in�nite domain in our approa
h usingthe FEM, we 
onstru
t an arti�
ial boundary away from the approximate Earthsurfa
e, see Figure 2, and due to giant size of the Earth we restri
t our 
omputa-

Fig. 2. Geometry of 
omputational domain.tions only to a partial domain 
 depi
ted in Figure 2, too. The bottom surfa
e�1 represents a part of the real Earth surfa
e, dis
retized by triangles, 
overinge. g. a neighborhood of Slovakia, where the Neumann boundary 
ondition is given.The upper spheri
al part �2 = fx; jxj = Rg of the domain represents the arti�
ialboundary where the Diri
hlet boundary 
ondition is pres
ribed and also on furtherarti�
ial planar boundaries �3;�4;�5;�6 we use Diri
hlet boundary 
ondition. Thenour geodeti
 BVP is de�ned as follows:��T (x) = 0; x 2 
; (1)�T��n = �Æg(x) on �1; (2)T (x) = TEGM�96(x); on �i; i = 2; : : : ; 6; (3)
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onstru
t the weak formulation of the problem (1) { (3) we de�ne thespa
e of test fun
tions V that is the spa
e of fun
tions from W (1)2 (
) whi
h areequal to 0 on �i; i = 2; : : : ; 6 in the sense of tra
es. We multiply the di�erentialequation (1) by w 2 V and getZ
rT � rw dxdydz � Z�
rT � nw d� = 0; 8w 2 V: (4)We 
an de�ne the weak formulation of our BVP (1) { (3) as follows: we look fora fun
tion T , su
h that T � TEGM�96 2 V andZ
rT � rw dxdydz + Z�1 Ægw d� = 0; 8w 2 V: (5)Assuming Æg 2 L2(�1) and extension of TEGM�96 2 W (1)2 (
) due to [2℄ or [15℄solution of this problem always exists and is unique.Moreover the �nite element approximation given in the following subse
tion 
on-verges to the weak solution re�ning the �nite element grid.4.2. FEM dis
retizationThe FEM is a numeri
al method for solving partial di�erential equations and itassumes dis
retization of the domain by a set of subdomains 
alled the �nite elementssee e. g. [2℄ or [14℄. In order to build the �nite element approximation one 
an pro
eedas follows. One seeks an approximation to the solution of the di�erential equationon every element e as a linear 
ombination of nodal values tej and approximationfun
tions 	ej i. e., T (x; y; z) � T e(x; y; z) = NXj=1 tej	ej(x; y; z); (6)where N is a number of element nodes. Then the weak identity (4) is used on everyelement and 	ei ; i = 1; : : : ; N are 
onsidered as test fun
tions w. In this way we getthe element system of equations for ea
h e given byZ
e NXj=1 tjr	ei � r	ejdxdydz � Z�
e 	ei qnd� = 0; i = 1; : : : ; N; (7)where qn are interelement 
uxes. It 
an be written in a matrix form: PNj=1Keijtj �Qei = 0, where K = [Keij ℄N�N is an element sti�ness matrix and Q = [Qei ℄N repre-sents a ve
tor of 
uxes through element fa
es.



Gravimetri
 Quasigeoid in Slovakia by the Finite Element Method 793To 
reate the global �nite element model, one should use the balan
e of theinterelement 
uxes and 
ontinuity of numeri
al solution on interelement boundaries.Taking into a

ount the boundary 
onditions (2) { (3) one ends up with the globallinear system. For our 3D 
ase we use �nite element software ANSYS [1℄ and its 3D4-nodes tetrahedral elements.5. NUMERICAL EXPERIMENTSOur 
omputational domain 
 has been the spa
e above Slovakia, represented bya series of triangular areas with maximal diameter 0:11 deg, up to the sphere withradius R = 6500 or 7000km. On one spheri
al and four planar boundaries of 
 we
onsider the Diri
hlet BC, i. e., disturbing potential generated from EGM-96 [8℄ andon the bottom boundary the Neumann BC in the form of gravity disturban
es isused.In the �rst experiment the input gravity disturban
es (2), shown in the se
ond
olumn of Figure 3, were generated from EGM-96 by program GRAFIM [13℄. TheANSYS nodal solution, the disturbing potential T , has been transformed into thequasigeoidal heights by the Bruns formula [12℄ and 
ompared with quasigeoidalheights generated from EGM-96 using program GRAFIM as well. One 
an see goodqualitative agreement of our result in 
omparison to heights generated from EGM-96(Figure 4).

Fig. 3. Computational grid and gravity disturban
es generated from EGM-96.In the se
ond experiment we have used the gravity disturban
es (2) 
omputedfrom a
tual gravity [7℄, depi
ted in Figure 5. As it is obvious from Figure 3 andFigure 5, there were di�eren
es between these two types of data and as well asbetween the following �nal quasigeoidal heights (Figure 6). The reason is that theEGM-96, from whi
h the gravity disturban
es in the �rst experiment were generated,is joint spheri
al harmoni
 model 
ompleted to the degree and order 360 and on theother hand the a
tual gravities used in the se
ond experiment were gained by detailedgravity mapping.The results of the se
ond experiment have been tested by 61 GPS/leveled points
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Fig. 4. Quasigeoidal heights generated from EGM-96 and 
omputed by ANSYS fromEGM-96 gravity disturban
es.

Fig. 5. Gravity disturban
es 
omputed from detailed gravity mapping GrS-95 and modelof terrain generated from SRTM.shown in Figure 7. To gain ellipsoidal heights H the 36-hours GPS observations'sessions were performed and for altitudes above sea level h all points were 
onne
tedto the Slovak leveling network using pre
ise spirit leveling. Then for referen
e quasi-geoidal heights hold �ref = h�H .The mean residual �ref � �ANSYS has been 0.803m and the standard deviation0.202m. It is a promising result in 
omparison with two versions of mu
h moredetailed Gravimetri
 Model of Slovak Quasigeoid 2003 (GMSQ03B/C) where themean residuals have been 0.334m (GMSQ03B) and 0.711m (GMSQ03C) and thestandard deviations 0.190m (GMSQ03B) and 0.076m (GMSQ03C) [9℄.In order to use the quasigeoid model in pra
ti
e the adaptation into the nationalverti
al datum, so 
alled �tting, has to be made. Our future investigation will beaimed at both �tting and improving of a

ura
y of the quasigeoid model by usinggenuine theory in detailed terrain and gravimetri
 data. We are willing to use parallel
omputations as well.
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Fig. 6. Gravimetri
 model of Slovak quasigeoid 
al
ulated by FEM.
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