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Abstract The paper deals with data filtering on closed
surfaces using linear and nonlinear diffusion equations. We
define a surface finite-volume method to approximate numer-
ically parabolic partial differential equations on closed sur-
faces, namely on a sphere, ellipsoid or the Earth’s surface.
The closed surface as a computational domain is approxi-
mated by a polyhedral surface created by planar triangles
and we construct a dual co-volume grid. On the co-volumes
we define a weak formulation of the problem by applying
Green’s theorem to the Laplace–Beltrami operator. Then the
finite-volume method is applied to discretize the weak for-
mulation. Weak forms of elliptic operators are expressed
through surface gradients. In our numerical scheme we use
a piece-wise linear approximation of a solution in space
and the backward Euler time discretization. Furthermore,
we extend a linear diffusion on surface to the regularized
surface Perona–Malik model. It represents a nonlinear dif-
fusion equation, which at the same time reduces noise and
preserves main edges and other details important for a cor-
rect interpretation of the real data. We present four numerical
experiments. The first one has an illustrative character show-
ing how an additive noise is filtered out from an artificial
function defined on a sphere. Other three examples deal with
the real geodetic data on the Earth’s surface, namely (i) we
reduce a stripping noise from the GOCE satellite only geopo-
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tential model up to degree 240, (ii) we filter noise from the
real GOCE measurements (the component Tzz), and (iii) we
reduce a stripping noise from the satellite only mean dynamic
topography at oceans. In all experiments we focus on a com-
parison of the results obtained by both the linear and nonlin-
ear models presenting advantages of the nonlinear diffusion.

Keywords Data filtering on a closed surface · Linear
and nonlinear diffusion equations · Surface finite volume
method · Surface gradients · The regularized surface
Perona–Malik model

1 Introduction

Data filtering has become an essential part of processing
various kinds of measurements that contain noise and other
inaccuracies. In many applications, a quality of filtering has
obvious impact on correct interpretations of obtained results.
During the last decades there have been developed many effi-
cient filters that can reduce noise from observed data. The
filters usually used for processing measurements in geodesy
are mostly based on linear filtering, e.g. Gaussian, Wiener
or Kalman filters, considered either in frequency or space
domain. However, the linear filtering is based on uniform
smoothing, which at the same time smoothes main struc-
tures in the signal losing important information about these
characteristics.

On the contrary, the nonlinear diffusion filtering allows
non-uniform smoothing that can be locally adapted to data
features, e.g. according to local gradients or curvature of the
noisy data. Such adaptive smoothing effect has an advantage
that main structures or edges can be preserved while the noise
can be effectively reduced. A need of optimal nonlinear filters
underlines a fact that most physical systems in nature are
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144 R. Čunderlík et al.

inherently nonlinear. Therefore recently developed nonlinear
filters like the particle filters, extended Kalman filters, batch
filters, exact recursive filters and others have become popular
in many practical applications.

In this paper we focus on filtering methods mostly used
in image processing that are based on the partial differential
equations (PDEs) approach (cf. Alvarez et al. 1993; Mikula
and Ramarosy 2001; or Mikula 2002). The first step to use
PDEs for image processing was done at the beginning of
the 80’s (Witkin 1983; Koenderink 1984). By the simple
observation that the Gauss function is a fundamental solution
of the linear heat (diffusion) equation, it has been possible
to replace the classical operation—convolution of an image
with the Gauss function (Gaussian smoothing)—by solving
the linear diffusion equation for a corresponding time with
an initial condition given by the processed image. It has been
well known that Gaussian smoothing (linear diffusion) blurs
edges in the image and moves their positions. To overcome
this drawback, the nonlinear diffusion models started to be
developed.

Since the end of the 80’s, the nonlinear diffusion equations
have been used for processing of 2D or 3D images. After the
pioneering work of Perona and Malik (1987), who modified
the linear heat equation to a nonlinear diffusion preserving
edge positions, there has been a great deal of interests in
applications and analysis of such equations. At present, there
are known at least two basic nonlinear diffusion approaches;
(i) the regularized Perona–Malik model, where the diffusion
coefficient depends on an edge detector (Catté et al. 1992),
and (ii) the geodesic mean curvature flow model based on
a geometrical diffusion of level-sets of the image intensity
(Caselles et al. 1995, 1997; Kichenassamy et al. 1995, 1996,
or Chen et al. 2000).

The aim of this paper is to present mathematical mod-
els and numerical methods for solving the linear and non-
linear diffusion equations considered on a closed surface
like a sphere, ellipsoid or the Earth’s surface. We introduce
finite volume schemes to obtain numerical solutions of these
parabolic PDEs on closed surfaces. In case of the nonlin-
ear surface diffusion we use the regularized surface Perona–
Malik model. Presented filtering methods represent original
approaches from the geodetic as well as mathematical point
of view. Another approach based on surface finite elements
for the parabolic PDEs including a detailed mathematical
background is described in Dziuk and Elliott (2007).

2 The linear diffusion on a closed surface

Conservation of a scalar quantity u on a closed surface Γ with
a diffusive flux −λ∇Su, where λ is the diffusivity coefficient,
leads to the diffusion equation

∂u

∂t
− ∇S · (λ∇Su) = 0 (1)

on Γ (Dziuk and Elliott 2007), where ∇S represents a tan-
gential or surface gradient. For simplicity we consider λ ≡ 1.
Then Eq. (1) can be written in the form

∂u

∂t
− �Su = 0, (2)

where �S is the Laplace–Beltrami operator, which represents
the generalized Laplace operator defined on a surface. The
parabolic PDE (2) represents the surface linear diffusion and
corresponds to the heat equation on a closed surface. In case
that Γ is a closed surface in 3D, Eq. (2) does not need a
boundary condition.

3 The surface finite volume method for the linear
diffusion

In order to approximate numerically the linear diffusion
equation (2) on the closed surface Γ , we define a surface
finite volume method (SFVM). At first, the computational
domain Γ is approximated by a polyhedral surface using an
appropriate triangulation. An example of the triangulation of
a sphere is shown in Fig. 1, where the representative nodes
Xi (i = 1, . . . , N ) create planar triangles. Then we construct
a dual co-volume grid on such triangulation, i.e. at each node
Xi we create a finite volume Vi bounded by straight lines
that connect midpoints between Xi and its neighbours with
centres of masses of all planar triangles joined in the node
Xi (Fig. 2).

Integrating Eq. (2) over the co-volume Vi and applying
Green’s theorem we obtain the integral equation∫

Vi

∂u

∂t
dx −

∫

∂Vi

∇Su · η̄i ds = 0, (3)

Fig. 1 An example of the triangulation of a sphere with the nodes Xi
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Nonlinear diffusion filtering of data on the Earth’s surface 145

Fig. 2 The co-volume Vi corresponding to the node Xi and the trian-
gles Tiq joined at this node

where ∂Vi is the co-volume’s boundary and η̄i is the unit
outward normal to this boundary considered in the tangential
plane to Vi . Taking into account geometry of the co-volume
Vi we get the form

∫

Vi

∂u

∂t
dx −

Qi∑
q=1

∫

∂Viq

∇Su · η̄iqds = 0, (4)

where ∂Viq are portions of the co-volume’s boundary with
their normal vectors η̄iq (Fig. 3) and Qi is the number of all
triangles joined in the node Xi . This form represents a weak
formulation of the problem defined on the finite volume and
provides a basis of our SFVM.

In our numerical scheme we consider a piece-wise linear
representation of a solution in space and the backward Euler
time discretization. Hence, the time derivative is approxi-
mated by the backward difference

∂u

∂t
≈ uk − uk−1

τ
, k = 1, . . . , K (5)

where uk represents the numerical solution in the kth time
step and τ is the equidistant discrete time step. Then the first
integral in the weak formulation (4) can be replaced by

∫

Vi

∂u

∂t
dx ≈ m(Vi )

uk − uk−1

τ
, (6)

where m(·) represents a measure of a given set, in this case
the area of the co-volume Vi .

Since we use a linear representation of the solution uk on
each triangle, the surface gradient ∇Suk is constant over each
triangle Tiq , and we can state

∇Suk ≈ Pk
Tiq

= 1

m(Tiq)

∫

Tiq

∇Sukdx . (7)

Applying Green’s theorem to Eq. (7) we obtain

Pk
Tiq

= 1

m(Tiq)

∫

∂Tiq

uk n̄iqds, (8)

where n̄iq is the unit outward normal to the boundary of the
triangle Tiq . Taking into account the linear approximation
of the solution, the surface gradient can be expressed by a
combination of nodal values uk

i of the approximate solution
and by geometry of the triangle Tiq

Pk
Tiq

= 1

m(Tiq)

(
uk

i + uk
q1

2
diq1n̄iq1 + uk

i + uk
q2

2
diq2n̄iq2

+uk
q1 + uk

q2

2
dq1q2n̄q1q2

)
. (9)

Here nodal values of the solution, sizes of the triangular
sides and their normal vectors are denoted according to Fig. 3.

Afterwards, an approximation of the weak formulation (4)
for the co-volume Vi in the time step k can be written in the
form

Fig. 3 Denotations of the sides
of the triangle
Tiq (diq1, diq2, dq1q2) and
portions of the co-volume’s
boundary (e1

iq , e2
iq ) (left), and

the corresponding outward unit
normal vectors to the triangle
Tiq (niq1, niq2, nq1q2) and to
the co-volume’s boundary
(η1

iq , η2
iq ) (right)
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146 R. Čunderlík et al.

m(Vi )
uk

i − uk−1
i

τ
−

Qi∑
q=1

∫

∂Viq

Pk
Tiq

· η̄iqds = 0. (10)

Since the surface gradient Pk
Tiq

is constant on each trian-
gle and the normal vectors η̄iq are constant on each portion
∂Viq of the co-volume’s boundary in the triangle Tiq , we can
rewrite Eq. (10) into the following way

m(Vi )
uk

i − uk−1
i

τ

−
Qi∑

q=1

(
m(e1

iq)η̄1
iq · Pk

Tiq
+ m(e2

iq)η̄2
iq · Pk

Tiq

)
= 0, (11)

where m(e1
iq) and m(e2

iq) are sizes of the portions of the
co-volume’s boundary ∂Viq that belong to the same triangle
Tiq (Fig. 3). Putting known nodal values uk−1

i of the solution
from the previous time step to the right-hand-size, we get the
final form

uk
i − τ

m(Vi )

Qi∑
q=1

(
m(e1

iq)η̄1
iq · Pk

Tiq
+ m(e2

iq)η̄2
iq · Pk

Tiq

)

= uk−1
i , ∀i, (12)

which represents an implicit numerical scheme for the linear
diffusion on a closed surface. Equation (12) is valid for each
finite volume Vi , i.e. for i = 1 . . . , N , where N is a number
of all nodes. It means that Eq. (12) represent a linear system
of equations that needs to be computed in every time step

Auk = uk−1, (13)

where A represents the system matrix and uk = {uk
1, uk

2, . . . ,

uk
N }T is the vector of nodal values of the solution in the kth

time step. The system matrix A is the sparse non-symmetrical
matrix. Number and locations of non-zero coefficients in the
i th row of the matrix A depends on the number of neighbours
of the particular node Xi , and on numbering of the nodes for
a chosen triangulation. An appropriate choice of the time
step τ makes the system matrix A diagonally dominant (see
Sect. 5.1). Let us remind that in case of filtering on a closed
surface there is no need of a boundary condition.

4 The nonlinear diffusion on a closed surface

In general, the linear diffusion corresponds to the Gaussian
filtering (cf. Witkin 1983; Koenderink 1984) which has a
uniform smoothing effect. Therefore we extend the surface
linear diffusion described by Eq. (2) to a nonlinear diffusion
on a surface. A key idea is that the diffusivity coefficient λ in
Eq. (1) should be non-uniform and dependent on a solution.
In our approach we use an analogy to the regularized Perona–
Malik model (Catté et al. 1992) applied to the filtering on a

closed surface, i.e. we use the regularized surface Perona–
Malik model in the form

∂u

∂t
− ∇S · (g(|∇Suσ |)∇Su) = 0, (14)

which represents the nonlinear parabolic PDE. Here the func-
tion g is the edge detector defined as

g(|∇Suσ |) = 1

1 + H |∇Suσ |2 , (15)

where uσ is the solution of the linear diffusion obtained for a
short time step σ and H > 0 is a parameter that gives us
a decision capability which gradients preserve. Hence,
the edge detector depends on surface gradients of the
solution, i.e. large gradients yield its small values and
opposite. Such nonlinearity allows adaptive smoothing. An
appropriate choice of the parameter H plays an important
role in the filtering process and needs to be tuned experimen-
tally.

In order to approximate numerically the surface nonlinear
diffusion equation (14), we again apply SFVM. In the fol-
lowing equations we use the same denotations as described
in Sect. 3. Integrating Eq. (14) over the co-volume Vi ,∫

Vi

∂u

∂t
dx −

∫

Vi

∇S · (g(|∇Suσ |)∇Su)dx = 0, (16)

and applying Green’s theorem to the second integral we get
a weak formulation of the nonlinear PDE (14) in the form∫

Vi

∂u

∂t
dx −

∫

∂Vi

g(|∇Suσ |)∇Su · η̄i ds = 0. (17)

After analogous steps as described in Sect. 3 we obtain

m(Vi )
uk

i − uk−1
i

τ
−

Qi∑
q=1

∫

∂Viq

g(|Pσ,k−1
Tiq

|)Pk
Tiq

· η̄iqds = 0,

(18)

and finally the form

m(Vi )
uk

i − uk−1
i

τ
−

Qi∑
q=1

(
m(e1

iq)η̄1
iq · Pk

Tiq
g(|Pσ,k−1

Tiq
|)

+ m(e2
iq)η̄2

iq · Pk
Tiq

g(|Pσ,k−1
Tiq

|)
)

= 0, (19)

which represents a semi-implicit numerical scheme for the
nonlinear diffusion on a closed surface. Here the edge detec-
tor depends on Pσ,k−1

Tiq
, i.e. on the surface gradients of the

solution obtained from the previous time step, which is
slightly smoothed by the linear diffusion using one implicit
time step with the length σ .

Comparing the semi-implicit scheme in Eq. (19) with the
implicit scheme for the linear diffusion in Eq. (12), the only
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Nonlinear diffusion filtering of data on the Earth’s surface 147

Fig. 4 a The artificial function u defined on a sphere which equals to 1 on lands and to 0 at oceans, b the function u with the uniform additive
noise up to 40 % at 10 % of all nodes

difference is that now the surface gradients Pk
Tiq

are multi-
plied by the edge detector. This allows an adaptive smoothing
according to surface gradients of the solution obtained from
the previous time step. Consequently, the edge detector is
step by step evolving in time giving an opportunity to pre-
serve main structures and effectively reduce the noise.

5 Numerical experiments

We present four numerical experiments. The first one has an
illustrative character showing how an additive noise is filtered
out from an artificial function defined on a sphere. In this
experiment an exact solution is known therefore we are able
to demonstrate an efficiency of our filtering methods using
quantitative measures. SD of residuals between the exact and
filtered solutions for different parameters and iterative steps
are our indicator in the process of tuning optimal parameters
for the edge detector.

Other three examples deal with filtering of the real geo-
detic data on the Earth’s surface, namely (i) we reduce a
stripping noise from the GOCE satellite only geopotential
model up to degree 240, (ii) we filter noise from the real
GOCE measurements, namely the component Tzz , and (iii)

we reduce a stripping noise from the satellite only mean
dynamic topography (MDT) at oceans. In all experiments
we focus on a comparison of the results obtained by both
the linear and nonlinear models presenting advantages of the
nonlinear diffusion.

5.1 Filtering of the additive noise

In the first numerical experiment we test our linear and non-
linear diffusion filtering on a sphere reducing an additive
noise. At first we approximate the sphere by a triangula-
tion that is based on a subsequent division of a 12-hedron
(Fig. 1) using the same strategy as described in Čunderlík et
al. (2008). In this experiment we use the triangulation with
102,402 nodes that corresponds to the resolution of 0.5625◦
in latitude.

On this triangulated sphere we define an artificial function
u in such a way that ui = 1 for all nodes located on lands and
ui = 0 for all nodes at oceans (Fig. 4a). On this function we
put a uniform additive noise up to 40 % at 10 % of all nodes
randomly distributed over the globe (Fig. 4b), i.e. the gener-
ated uniform non-Gaussian additive noise is from the interval
〈−0.4, 0.4〉 and its SD is 0.232. After that ui ∈ 〈0.6, 1.4〉 on
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148 R. Čunderlík et al.

lands and ui ∈ 〈−0.4, 0.4〉 at oceans. Such data represent
our initial condition u0. Our goal is to reconstruct the origi-
nal function u using the proposed SFVM numerical schemes.

In case of the linear surface diffusion, the liner system
of equations is given by the implicit numerical scheme in
Eq. (12) and needs to be computed in every filtering time
step. In our experiments we use the iterative successive over-
relaxation (SOR) method (Barrett et al. 1994). In order to
get a stability and convergence of SOR, we make the sys-
tem matrix A diagonally dominant choosing the time step
τ proportional to an average area of the co-volumes

τ ≈ 1

N

N∑
i=1

m(Vi ). (20)

Such a coupling is natural for solving the parabolic PDEs
also due to precision reasons (Dziuk and Elliott 2007). The
choice of the time step is essential for the whole filtering
process and implies how many filtering steps (or iterations)
will be necessary to get reasonable results. (Remark: to distin-
guish between terms, a number of filtering steps corresponds
to a number of time steps used for solving the linear or non-
linear diffusion equation, and the time step τ in a discretiza-
tion of PDE can be called in this application “the discrete
filtering step”. For simplicity, in the following we use the
term “number of iterations” instead of “number of filtering
steps”, since such terminology is standard in diffusion fil-
tering). Our numerical results obtained after 10, 20, 40 and
100 iterations of the linear diffusion filtering (τ = 109) are
depicted in Fig. 6a (left). Figure 7a shows the corresponding
profiles along the equator across Africa.

In case of the nonlinear surface diffusion, the linear system
of equations is given by the semi-implicit numerical scheme
in Eq. (19). To get this system, first we have to apply the linear
diffusion filtering for the solution in the previous time step
for a short time step σ . Then we evaluate the corresponding
surface gradients that indicate values of the edge detector.
After that we are able to compute non-zero coefficients of
the system matrix. This process is repeated in every iteration
(filtering step). Therefore, the nonlinear surface diffusion fil-
tering is more time consuming and usually requires more
iterations.

Here the crucial part is to find optimal parameters for the
edge detector. Since in this experiment we know the exact
solution, we are able to tune them considering the SD of
residuals between the exact and filtered solutions for different
parameters and iterative steps. Graphs in Fig. 5 show which
parameters give the best results for the chosen time step τ =
109. They also demonstrate how the choice of the parameters
H and σ (compare Fig. 5a, b) can influence the quality of
results as well as a number of iterations necessary to reach
satisfactory results.

Fig. 5 Filtering of the additive noise: SD of residuals between the exact
and filtered solutions using the linear and nonlinear surface diffusion
with different parameters of the edge detector (τ = 109) a σ = τ ,
b σ = 10τ

Figure 6b depicts the filtered solutions obtained after 25,
50, 100 and 150 iterations of the nonlinear diffusion filter-
ing (τ = 109, H = 1012, σ = τ). Figure 7b shows the corre-
sponding profiles along the equator across Africa and Fig. 8
the edge detector for the corresponding time steps. One can
see how the edge detector is stepwise evolving in time. The
signal corresponding to the additive noise is step by step
vanishing while high gradients and their positions remain
preserved. Here we remind that the edge detector always
depends on surface gradients computed from the solution in
the previous iterative step, thus it is adaptive to the filtered
solution evolving in time. Such an adaptive smoothing effect
is a main advantage of the nonlinear filtering.

Comparing results from the linear and nonlinear fil-
tering (Figs. 6, 7) it is evident that both approaches
effectively reduce the additive noise. However, the linear
filtering also smooths the main structures, i.e. high gra-
dients on edges of continents, while the nonlinear model
preserves them almost unchanged. Considering the SD of
residuals between the exact and filtered solutions (Fig. 5),
blurring of edges by the linear diffusion yield consistent
worsening (after slight improvement at the beginning from
0.073 to 0.062). In contrary, the nonlinear diffusion is able to
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Nonlinear diffusion filtering of data on the Earth’s surface 149

Fig. 6 Filtering of the additive noise using a the linear surface diffusion (τ = 109), and b the nonlinear surface diffusion (τ = 109, H = 1012,

σ = τ)

reduce the SD of residuals from 0.073 to 0.017 (an improve-
ment about 77 %) if the optimal parameters of the edge detec-
tor are used.

5.2 Filtering of the stripping noise from the GOCE
geopotential model

In the second numerical experiment we apply the linear
and nonlinear surface diffusion filtering to reduce a strip-
ping noise from the satellite only geopotential models due
to a truncation error of the spherical harmonics approach.
Namely, we are filtering the disturbing potential evalu-
ated from the second release of the GOCE direct solution

(Bruinsma et al. 2010) up to degree 240 (Fig. 9a). In order
to treat better the stripping effect related mostly to higher
degree coefficients, our initial conditions u0 are given by the
residual disturbing potential computed from the coefficients
between degrees 21 and 240 (Fig. 9b), i.e. we remove the
low-frequency part up to degree 20.

In this experiment we use the same level of discretiza-
tion of the Earth’s surface as in the previous experiment, i.e.
102,402 nodes and the resolution 0.5625◦ in latitude. Since
here an exact solution is unknown, we tune optimal parame-
ters for the edge detector comparing our filtered solutions
with the residual disturbing potential evaluated from EGM-
2008 up to degree 2160 (Pavlis et al. 2008) removing the same
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150 R. Čunderlík et al.

Fig. 7 Profiles along equator
across Africa—filtering of the
additive noise using a the linear
surface diffusion, b the
nonlinear surface diffusion (blue
lines noisy signal, red lines
filtered solutions)

Fig. 8 Edge detector for the nonlinear surface diffusion filtering of the additive noise evolving in time

low-frequency part as in case of our initial data. Our criterion
is the SD of residuals at oceans (Fig. 11) supposing that the
solution from EGM-2008 is more precise, much smoother
and closer to reality. We neglect the fact that both datasets
correspond to different time period of input data, which is not

relevant for our purpose to filter out the stripping noise. We
omit the residuals on lands due to higher differences espe-
cially in mountainous regions. Figure 11 shows that using the
parameters τ = 109, H = 108 and σ = τ , we get the results,
which fit the best to EGM-2008. In this case the SD of the
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Nonlinear diffusion filtering of data on the Earth’s surface 151

Fig. 9 a The disturbing
potential from the second
release of the GOCE direct
solution up to degree 240, b the
residual disturbing potential
after removing the
low-frequency part up to degree
20 (unit: m2 s2)

residuals at oceans is reduced from 3.526 to 3.266 m2 s−2 (an
improvement about 7 %). In the case of the linear diffusion
an improvement is much smaller, i.e. about 2 % (from 3.526
to 3.459 m2 s−2).

Figure 10a depicts our final solution obtained after 300
iterations of the linear diffusion filtering, Fig. 10b the results
after 500 iterations of the nonlinear diffusion filtering and
Fig. 10c the residuals between both solutions. Figure 12
shows how the edge detector is evolving in time. One can
see how the edge detector is step by step closer to 1 in areas
of smaller gradients of the solution, where the stripping noise
finally vanishes. In areas of high gradients of the gravity field

the edge detector remains close to 0 and these zones are only
slightly smoothed. This is a main advantage in comparison
with the linear diffusion filtering whose uniform smoothing
effect does not preserve the main structures and smoothes
them rapidly (Fig. 10a). Consequently the highest residuals
between the linear and nonlinear filtering are in these zones
of abrupt changes in the gravity field (Fig. 10c).

5.3 Filtering of the noise from the GOCE measurements

In the third experiment we filter the noise from the real GOCE
measurements, namely from the component Tzz . We process
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152 R. Čunderlík et al.

Fig. 10 The filtered residual
disturbing potential obtained
a after 300 iterations of the
linear diffusion, and b after 500
iterations of the nonlinear
diffusion filtering, and c the
residuals between both solutions
(unit: m2 s2)

data observed during the period November–December 2009.
In this experiment we increase a level of the discretization
into the resolution 0.25◦ (518,402 nodes) in order to capture
better a dense coverage of the original GOCE measurements.
Artificially generated positions of 518,402 nodes of the
regular triangulation are replaced by 3D positions of the near-
est neighbour real GOCE measurements. It means the poly-
hedral approximation of our computational domain is given
by 3D positions of the GOCE mission in the time when the

chosen measurements were observed. Missing values in the
polar gaps are simulated from the GOCE-DIR2 geopotential
model up to degree 240. An altitude of these “polar nodes”
is prescribed to 249 km above the reference ellipsoid. In this
way we get our computational domain as well as initial data
for filtering (Fig. 13a).

In comparison with the previous experiment (Sect. 5.2),
smaller sizes of the co-volumes and a different character of
the noise have forced us to decrease the iterative time step
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Nonlinear diffusion filtering of data on the Earth’s surface 153

Fig. 11 Filtering of the residual disturbing potential from GOCE-
DIR2: SD of residuals at oceans between the filtered solutions and
EGM-2008 using the linear and nonlinear surface diffusion with differ-
ent parameters of the edge detector (τ = 109)

to τ = 108. The optimal parameters of the edge detec-
tor were tuned experimentally (H = 1012 and σ = τ).
Figure 13 depicts the obtained results after 10 and 30 itera-
tions of the linear (Fig. 13b) as well as nonlinear diffusion
filtering (Fig. 13c). For a better visualization of the noise in
Fig. 13a–c, the signal of Tzz simulated from GOCE-DIR2 up
to degree 240 is removed. Figure 13d shows a comparison
between the linear and nonlinear diffusion filtering after 10
and 30 iterations. One can see how the linear diffusion step
by step smoothes also main structures especially in areas
of abrupt changes in the gravity field, while the nonlinear
diffusion preserves them effectively reducing the noise. In

these zones the linear filtering after 30 iterations can reach a
loss of information more than 20 % of the signal (Fig. 13d).

5.4 Filtering of the stripping noise from the satellite only
MDT

The last numerical experiment deals with the diffusion filter-
ing of a stripping noise from the satellite only MDT obtained
from the CNES_CLS_10 mean sea surface model and the
GOCE-DIR2 geoid model up to degree 240 (Fig. 14a). Both
models are available from the GOCE User Toolbox (GUT)
(ESA 2011). In this experiment we use the same discretiza-
tion level as in the previous case, i.e. the resolution 0.25◦
(518,402 nodes), however the nodes are located on the Earth’s
surface.

In order to find optimal parameters of the edge detector, we
compare the filtered solutions with the MDT_CNES_CLS_
09 model (available from GUT) (Fig. 14b). Here we have
to realize that a final result, i.e. the filtered MDT, is very
smooth surface in comparison with amplitudes of the strip-
ping noise. It means we have to find such parameters of the
edge detector that will be very sensitive to small gradients of
MDT and at the same time will reduce high stripping noise.
This can be achieved using the parameter σ much higher
than τ . For such purposes we compare our filtering solutions
with MDT_CNES_CLS_09. We focus on the residuals in
area of the Antarctic Circumpolar Current (ACC) in order to
see which parameters preserve better significant gradients of
MDT in this zone.

Fig. 12 The edge detector of the nonlinear surface diffusion filtering evolving in time (τ = 109, H = 108, σ = τ)
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Fig. 13 Filtering of the noise from the real measurements of GOCE,
namely the component Tzz (a), using the linear diffusion (b), and the
nonlinear diffusion (c), and their comparison (d) (unit: Eötvös). For a

better visualization of the noise, the signal simulated from GOCE-DIR2
up to d/o 240 is removed in a right, b and c

Figure 15 depicts graphs of minimal SD of the resid-
uals in area of ACC between the filtered solutions and
MDT_CNES_CLS_09 using the different parameter H and
ratio (σ/τ) of the edge detector. Such analysis is performed
for two different time steps (i) τ = 0.5 × 109 (Fig. 15a),
and (ii) τ = 1.0 × 109 (Fig. 15b). Each point of the graph

represents the minimal value of the SD for the specified com-
bination of parameters. The number above this point corre-
sponds to the number of iterations necessary to reach the
minimum. For example, in case of τ = 0.5 × 109 (Fig. 15a),
the best results are achieved for H = 1012, σ = 25τ and
using 25 iterations. The similar results can be obtained using
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Fig. 14 a “Satellite-only”
mean dynamic topography
model obtained from the
CNES_CLS_10 mean sea
surface model and the
GOCE-DIR2 geoid model up to
d/o 240, and b the
MDT_CNES_CLS_09 model
(all models available from the
GOCE User Toolbox) (unit: m)

13 iterations and τ = 1.0 × 109, H = 1012 and σ = 12τ

(Fig. 15b). Anyhow, graphs in Fig. 15 indicate that a combi-
nation of the very smooth signal (e.g. MDT) and the relatively
high noise requires the parameter σ much higher than τ .

Figure 16 depicts the filtered satellite only MDT after 10
and 25 iterations of the linear (Fig. 16a) as well as nonlinear
diffusion filtering (Fig. 16b). Their comparison is depicted in
Fig. 16c. It shows how the nonlinear diffusion filtering pre-
serves main gradients in MDT important for oceanographic
applications (e.g. in areas of ACC, Kuroshio current and Gulf
Stream), while the linear diffusion smoothes them signifi-
cantly. Figure 16d depicts differences between filtered solu-

tions after 25 and 10 iterations. It confirms a fact that too
long filtering can slowly smooth also important structures
with small amplitudes, e.g. in area of the equatorial currents
in the Pacific Ocean.

Finally we use our filtered satellite only MDT as well as
the GUT a priori MDT_CNES_CLS_09 and MDT_DTU10
models to compute derived oceanographic characteristics.
Figure 17 depicts the zonal velocity component of the ocean
geostrophic surface currents. Figure 18 shows the velocity
speed of the ocean geostrophic surface currents in area of the
Aghulas current. The visual comparison indicates how the
preserving of the main gradients in MDT by the nonlinear
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Fig. 15 Nonlinear filtering of
the satellite-only MDT: minimal
SD of the residuals between the
filtered solutions and
MDT_CNES_CLS_09 using the
different parameter H and ratio
(σ/τ) of the edge detector,
a τ = 1.0 × 109, and b
τ = 0.5 × 109. Each point of the
graph represents the minimal
value of the SD for the specific
parameters. The number above
this point corresponds to the
number of iterations necessary
to reach the minimum (SD are
computed only from residuals in
area of the Antarctic
Circumpolar Current)

filtering is important for oceanographic purposes. This high-
lights an efficiency of the presented nonlinear diffusion fil-
tering method.

5.5 Computational aspects

All presented computations were performed on a standard
PC (2.4 GHz) requiring less than 1 GB of internal memory.
Memory requirements as well as the total CPU time depend
on a level of the discretization. In the first two numerical
experiments with 102,402 nodes (Sects. 5.1 and 5.2), every
100 iterations took about 58 s for the linear and 72 s for the
nonlinear diffusion filtering using only 30 MB of the internal
memory. In the experiments with 502,402 nodes (Sects. 5.3
and 5.4), every 30 iterations took about 94 s for the linear
and 122 s for the nonlinear diffusion filtering using 141 MB.
Such relatively small memory requirements give an opportu-
nity to filter data with much higher resolution. For example,

using 4 GB of the internal memory we can reach a level of
the discretization with the resolution of 0.05◦ (3 arc min)
corresponding to 12,960,002 nodes.

Besides the level of discretization, the total CPU time is
also influenced by a choice of the time step τ andσ . They have
essential impact on an overall duration of filtering as well as
on properties of the system matrix A that determine a number
of iterations necessary to reach prescribed precision in the
SOR iterative method. However, the most time consuming
part of the whole process is to find optimal parameters for the
nonlinear model that would give the most satisfactory results.
It means to tune the parameter H of the edge detector (15)
that is highly related to σ , i.e. to the short implicit time step
of the linear diffusion that is used to smooth the solution from
the previous time step. On the other hand, once the optimal
parameters are tuned for a specific type of data, they can be
used for different datasets of the same type, e.g. in case of
periodical monitoring of some quantity.
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Fig. 16 Filtering of the satellite-only mean dynamic topography (Fig. 14a) using a the linear diffusion (τ = 0.5 × 109), b the nonlinear diffusion
(τ = 0.5 × 109, H = 1012, σ = 25τ), c their comparison, and d differences between filtered solutions after 25 and 10 iterations (unit: m)

Finally, the time when to stop filtering plays an impor-
tant role in the whole process. There are several possible
technique which can be taken into consideration, e.g. to stop

the filtering process if the L2 norm of differences between
two consecutive filtering steps is below a specified thresh-
old. However, a theoretical solution how to select an optimal
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Fig. 17 The zonal velocity component of the ocean geostrophic sur-
face currents computed from a the GUT a priori MDT_CNES_CLS_09
(left) and MDT_DTU10 (right), and from the satellite-only MDT fil-

tered using b the linear diffusion after 10 (left) and 25 (right) iterations,
and c the nonlinear diffusion after 10 (left) and 25 (right) iterations

stopping time is still an objective of mathematical investiga-
tions (cf. Capuzzo Dolcetta and Ferretti 2001).

6 Discussion and conclusions

The developed filtering methods based on numerical solu-
tions to the linear and nonlinear diffusion equations on close
surfaces like a sphere, ellipsoid or the Earth’s surface repre-
sent an original approach for filtering data in geodesy. The
implicit and semi-implicit numerical schemes, derived using
the proposed surface finite volume method, are efficient for
linear and nonlinear filtering. Numerical experiments show
that both linear and nonlinear models can effectively reduce

noise. However, the linear diffusion also smoothes main
and important structures or edges in filtered data, while the
nonlinear diffusion allows preserving them. This adaptive
smoothing effect in comparison with the uniform one of the
linear filtering is a principal advantage of the nonlinear fil-
tering.

The presented nonlinear filter based on the regularized
surface Perona–Malik model requires tuning optimal para-
meters of the edge detector for specific data. It means to
find the most appropriate combination of the time step τ , the
sensitivity parameter H and the short implicit time step σ

for linear smoothing of the solution from the previous time
step. This is usually the most time consuming part of the
whole filtering process. On the other hand it gives users a
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Fig. 18 The velocity speed of the ocean geostrophic surface currents
computed from a the GUT a priori MDT_CNES_CLS_09, b the GUT
a priori MDT_DTU10, and from the satellite-only MDT filtered using

c the nonlinear diffusion after 25 iterations, and d the linear diffusion
after 20 iterations (detail in the Aghulas current area)

decision capability, which data and how much to preserve or
to smooth.

In comparison with filtering of classical 2D or 3D images
using the PDEs approach, filtering on closed surfaces has
advantage that no boundary conditions are necessary. Numer-
ical experiments show that both our filtering models conserve
“mass”, i.e. an integral of the filtered data over whole com-
putational domain, during all filtering steps. It confirms effi-
ciency of the numerical schemes since the diffusion equations
from their definitions should conserve a scalar quantity on the
closed surface. This property makes the developed nonlinear
Perona–Malik model suitable for data with an additive noise,
where a mean value should be conserved. Another approach
based on the mean curvature flow model is more appropriate
for data where the noise has the so called “salt & pepper”
character and should be reduced without requiring an overall
conservation of mass. A development of such nonlinear filter
is our plan for near future. We believe that the presented lin-
ear and nonlinear models of the diffusion filtering on closed
surfaces will be helpful for better processing of various mea-

surements related to the Earth’s surface and will contribute
to correct interpretations of obtained results.
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