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SOLVING THE OBLIQUE DERIVATIVE BOUNDARY-VALUE
PROBLEM BY THE FINITE VOLUME METHOD∗

MAREK MACÁK, KAROL MIKULA AND ZUZANA MINARECHOVÁ†

Abstract. This paper deals with the oblique derivative boundary-value problem and its solution
by the finite volume method. In this approach, the oblique derivative in the boundary condition is
decomposed into this normal and tangential components which are then approximated by means of
numerical solution values. The appropriate numerical schemes for 2D and 3D domains are developed
and numerical experiments are performed. The numerical solutions are compared to the exact
solutions and the second order accuracy of our 2D and 3D numerical scheme is obtained in all
experiments. Our work is motivated by the large scale oblique derivative boundary value problem
of physical geodesy.
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1. Introduction. Let us consider the following oblique derivative boundary-
value problem (BVP) in the bounded domain Ω:

−∆u(x) = 0, x ∈ Ω, (1.1)

< ∇u(x), ~s(x) > = p(x), x ∈ Γ ⊂ ∂Ω, (1.2)

u(x) = q(x), x ∈ ∂Ω− Γ, (1.3)

where u represents the unknown potential function, (1.2) represents the oblique
derivative boundary condition (BC) and <,> denotes the inner product.

The BPV (1.1)-(1.3) represents a modification of the crucial problem of physical
geodesy which is known as the fixed gravimetric BVP. In case of the fixed gravimetric
BVP, the computational domain is unbounded and BVP is defined as follows, cf.
[12, 8, 9, 3]:

−∆T (x) = 0, x ∈ R3 − S, (1.4)

< ∇T (x), ~s(x) > = −δg(x), x ∈ ∂S, (1.5)

T (x)→ 0, as |x| → ∞, (1.6)

where, in this field of study, T is the so-called disturbing potential, S is the Earth’s
body, δg(x) represents co-called gravity disturbance obtained by gravity measure-

ments and |x| = (
∑3
i=1 x

2
i )

1/2. Since (1.4)-(1.6) is defined in the infinite domain, for
solving this problem by finite volume method (FVM) we construct a bounded domain
Ω in the external space above the Earth [6]. The bottom surface Γ ⊂ ∂Ω represents
a part of the Earth surface ∂S. The upper spherical part and also further artificial
planar boundaries of the bounded domain represents the additional boundary where
the Dirichlet-type BC is prescribed. Such problem where we consider the oblique
derivative BC on Γ and Dirichlet BC elsewhere corresponds to (1.1)-(1.3).

There exist several approaches to the solution of fixed gravimetric BVP in physical
geodesy. For the global gravity field modelling mainly spherical harmonics are used
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and, for the local modelling the FFT-based methods [16] and the collocation [17]
are performed. Recently, further numerical methods are applied to the problems of
physical geodesy. The boundary element method (BEM) was used in [10, 11, 13,
3] and finite element method (FEM) and FVM were used in [14, 7, 6]. In these
approaches, the oblique derivative problem was transformed to a standard Neumann
BVP considering special projection of the oblique derivative to the normal of the
Earth. To obtain a numerical solution of fixed gravimetric BVP, in which the oblique
derivative is treated by its decomposition into normal and tangential components to
the Earth’s surface, the BEM and the collocation with linear basis functions were
applied in [4]. The variational method based on a weak formulation of (1.4)-(1.6) was
presented in [9].

Our aim is to present the novel scheme for solving oblique derivative BVP (1.1)-
(1.3) by the FVM in 2D and 3D domains. Opposite to the previous FEM and FVM
approaches, in this paper we decompose the oblique derivative to its normal and
tangential components and tested FVM by using such approach. A 2D FVM for
oblique derivative problems together with theoretical analysis was presented in [2]. In
this paper we solve the oblique derivative BVP in circular and spherical domains and
we show that experimental order of convergence (EOC) of the developed algorithms
is equal to 2. In a near future, we believe that this algorithm will be successfully
applied in solving the fixed gravimetric BVP with real gravimetric measurements on
the real Earth surface.

2. Solution to the oblique derivative BVP by the finite volume method.
The FVM is based on the approximation of conservation laws. It can be used on
arbitrary geometries, using structured or unstructured meshes, and it leads to robust
numerical solution. In FVM approach, we divide the computational domain into a
number of finite volumes p. Then, the integration over a finite volume and using
divergence theorem

−
∫
p

∆u dxdydz = −
∫
∂p

∇u.~n dσ, (2.1)

yield the weak formulation of the equation (1.4) in the finite volume p

−
∫
∂p

∂u

∂~n
dσ = 0. (2.2)

Let q ∈ N(p) be a neighbour of finite volume p, where we have denoted by N(p)
all neighbours of p. Let up and uq be approximate values of u in p and q, epq is a
boundary of finite volume p common with q respectively, ~npq is its unit normal vector
oriented from p to q and must by satisfied that ~npq is orthogonal to epq, m(epq) is
the area of epq. Let xp and xq by representative points of p and q respectively (e.g.
centers of gravity) and dpq their distance. If we approximate the normal derivative
along the boundary of finite volume p by

∂u

∂npq
≈ uq − up

dpq
, (2.3)

we obtain from (2.2) and (2.3)

−
∑
q∈Np

uq − up
dpq

m(epq) = 0, (2.4)
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which can by written in the form∑
q∈up

m(epq)

dpq
(up − uq) = 0, (2.5)

representing the linear system of algebraic equations for FVM. Then the term
m(epq)
dpq

defined on sides of finite volume p is referred to as the transmissivity coefficient [5].
The system (2.5) must be accompanied by the boundary conditions. In case of the
Dirichlet BC, we prescribe the value of uq on the boundary. In case of the oblique
derivative BC (1.2) it needs a special treatment which is discussed in the following
subsections.

2.1. Oblique derivative BC - 2D case. In this section we are dealing with
the numerical solution to the oblique derivative BVP (1.1)-(1.3) and we restrict our
attention to 2D computational domain Ω ⊂ R2.

We have to suggest a method for discretization of (1.2). To that goal we consider
a splitting of the gradient in normal and tangential directions

∇u = 〈∇u, ~n〉~n+ 〈∇u,~t〉~t =
∂u

∂~n
~n+

∂u

∂~t
~t, (2.6)

where ~n is the normal vector and ~t is a tangent vector to Γ.
Now we put (2.6) into (1.2) and obtain

〈∇u,~s〉 = 〈∂u
∂~n
~n+

∂u

∂~t
~t, ~s〉 =

∂u

∂~n
〈~n,~s〉+

∂u

∂~t
〈~t, ~s〉. (2.7)

Thus the condition (1.2) is transformed into

∂u

∂~n
〈~n,~s〉+

∂u

∂~t
〈~t, ~s〉 = p. (2.8)

Then we set as approximations of normal and tangent vectors,

~n =

(
xi−1,j − xi,j
|xi−1,j − xi,j |

,
yi−1,j − yi,j
|xi−1,j − xi,j |

)
, (2.9)

~t =

(
xN − xS
|xN − xS |

,
yN − yS
|xN − xS |

)
, (2.10)

where xi,j = (xi,j , yi,j) is a representative point of the finite volume p = (i, j) and
xi− 1

2 ,j
= (xi− 1

2 ,j
, yi− 1

2 ,j
), xN = (xN , yN ) and xS = (xS , yS) are points on the bound-

ary Γ, see Figure 2.1. For the definition of the oblique vector ~s in our numerical
experiments we use a mass point source xC = (xC , yC) ∈ R2 and we consider

~s =

(
xC − xi− 1

2 ,j

|xC − xi− 1
2 ,j
|
,
yC − yi− 1

2 ,j

|xC − xi− 1
2 ,j
|

)
. (2.11)

By ui,j we denote the approximate value of the solution u in the finite volume p =
(i, j). Then we approximate the normal and tangential derivatives in (2.8) by

∂u

∂~n
=

ui−1,j − ui,j
|xi−1,j − xi,j |

, (2.12)

∂u

∂~t
=

uN − uS
|xN − xS |

, (2.13)
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a) b)

Fig. 2.1. Illustration of 2D FVM grid

where values uS , uN are defined by

uN =
ui,j + ui,j+1 + ui−1,j + ui−1,j+1

4
,

uS =
ui,j + ui,j−1 + ui−1,j + ui−1,j−1

4
,

and for the bottom boundary, i.e. i = 1, we add new unknowns which are then
included into the system. If we put these approximations into (2.8), we get a discrete
form of the 2D oblique derivative BC (1.2) in the form

〈∇u,~s〉 ≈ ui−1,j − ui,j

|xi−1,j − xi,j |
〈~n,~s〉+

uN − uS

|xN − xS |
〈~t, ~s〉 = p. (2.14)

Our FVM for solving (1.1)-(1.3) then consist of solving system (2.5) for all inner finite
volumes accompanied by the equations (2.14) for finite volumes along the bottom
boundary Γ and by considering Dirichlet BC for finite volumes along ∂Ω− Γ.

2.2. Oblique derivative BC - 3D case. In 3D case, we follow the similar
strategy as in 2D case. To that goal, we split of the gradient in normal and two
tangential directions

∇u = 〈∇u, ~n〉~n+ 〈∇u, ~t1〉~t1 + 〈∇u, ~t2〉~t2 =
∂u

∂~n
~n+

∂u

∂~t1
~t1 +

∂u

∂~t2
~t2, (2.15)

where ~n is the normal vector and ~t1, ~t2 are linearly independent tangent vectors to
Γ ⊂ ∂Ω ⊂ R3. As in 2D case, we put (2.15) into (1.2) to obtain

〈∇u,~s〉 = 〈∂u
∂~n
~n+

∂u

∂~t1
~t1 +

∂u

∂~t2
~t2, ~s〉 =

∂u

∂~n
〈~n,~s〉+

∂u

∂~t1
〈~t1, ~s〉+

∂u

∂~t2
〈~t2, ~s〉 (2.16)

and the BC (1.2) is transformed into the form

∂u

∂~n
〈~n,~s〉+

∂u

∂~t1
〈~t1, ~s〉+

∂u

∂~t2
〈~t2, ~s〉 = p. (2.17)
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We set approximations of normal and tangent vectors

~n =

(
xi−1,j,k − xi,j,k
|xi−1,j,k − xi,j,k|

,
yi−1,j,k − yi,j,k
|xi−1,j,k − xi,j,k|

,
zi−1,j,k − zi,j,k
|xi−1,j,k − xi,j,k|

)
, (2.18)

~t1 =

(
xEN − xWS

|xEN − xWS |
,
yEN − yWS

|xEN − xWS |
,
zEN − zWS

|xEN − xWS |

)
, (2.19)

~t2 =

(
xWN − xES
|xWN − xES |

,
yWN − yES
|xWN − xES |

,
zWN − zES
|xWN − xES |

)
, (2.20)

where xi,j,k = (xi,j,k, yi,j,k, zi,j,k) is a representative point of the finite volume p =
(i, j, k) and xi− 1

2 ,j,k
= (xi− 1

2 ,j,k
, yi− 1

2 ,j,k
, zi− 1

2 ,j,k
), xWN = (xWN , yWN , zWN ), xEN =

(xEN , yEN , zEN ), xWS = (xWS , yWS , zWS) and xES = (xES , yES , zES) are points on
the bottom boundary Γ, see Figure 2.2. In our numerical experiments, we consider
the oblique vector in the form

~s =

(
xC − xi− 1

2 ,j,k

|xC − xi− 1
2 ,j,k
|
,
yC − yi− 1

2 ,j,k

|xC − xi− 1
2 ,j,k
|
,
zC − zi− 1

2 ,j,k

|xC − xi− 1
2 ,j,k
|

)
, (2.21)

where xC is the point xC = (xC , yC , zC) ∈ R3. By ui,j,k we denote the approximate

a) b)

Fig. 2.2. Illustration of 3D FVM grid

value of the solution u in the finite volume p = (i, j, k) and we approximate the normal
and tangential derivatives in (2.17) by

∂u

∂~n
=

ui−1,j,k − ui,j,k
|xi−1,j,k − xi,j,k|

, (2.22)

∂u

∂~t1
=

uEN − uWS

|xEN − xWS |
, (2.23)

∂u

∂~t2
=

uWN − uES
|xWN − xES |

, (2.24)

where values uWN , uEN , uWS , uES are defined by

uWN =
ui,j,k + ui,j−1,k + ui,j,k−1 + ui,j−1,k−1 + ui−1,j,k + ui−1,j−1,k + ui−1,j,k−1 + ui−1,j−1,k−1

8
,

uEN =
ui,j,k + ui,j−1,k + ui,j,k+1 + ui,j−1,k+1 + ui−1,j,k + ui−1,j−1,k + ui−1,j,k+1 + ui−1,j−1,k+1

8
,

uWS =
ui,j,k + ui,j+1,k + ui,j,k−1 + ui,j+1,k−1 + ui−1,j,k + ui−1,j+1,k + ui−1,j,k−1 + ui−1,j+1,k−1

8
,

uES =
ui,j,k + ui,j+1,k + ui,j,k+1 + ui,j+1,k+1 + ui−1,j,k + ui−1,j+1,k + ui−1,j,k+1 + ui−1,j+1,k+1

8
.
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If we put these approximations into (2.17) we get a discrete form of the 3D oblique
derivative BC (1.2)

〈∇u,~s〉 ≈ ui−1,j,k − ui,j,k

|xi−1,j,k − xi,j,k|
〈~n,~s〉+

uEN − uWS

|xEN − xWS |
〈~t1, ~s〉+

uWN − uES

|xWN − xES |
〈~t2, ~s〉 = p. (2.25)

These equations are incorporated into the FVM linear system which is then solved.

3. Numerical experiments. In this section, we present several numerical ex-
periments which were performed in order to test the proposed numerical schemes. In

2D experiments - Computational domains and boundary conditions
Exp. r θ Type of BCs xC

1. (1, 2) (0, 2π) Dirichlet - Neumann −
2. (1, 2) (0, 2π) Oblique with projection to normal (0.3,−0.1)
3. (1, 2) (0, 2π) Oblique (−0.1,−0.3)
4. (1, 2) (0, 2π) Oblique with rotation by 15◦ (0.2, 0.4)
5. (1, 2) (0, π4 ) Oblique (0.4,−0.3)

Table 3.1
2D experiments - Computational domains and types of boundary conditions; r and θ are polar

coordinates and in column xC are cartesian coordinates of the mass point source.

3D experiments - Computational domains and boundary conditions
Exp. r θ × φ Type of BCs Center xC

1. (1, 2) (0, π4 )× (0, π4 ) Obl. with projection to normal (−0.2, 0.1, 0.05)

2. (1, 2) (0, π4 )× (0, π4 ) Oblique (−0.2, 0.1, 0.25)

3. (1, 2) (0, π4 )× (0, π4 ) Oblique with rotation by 15◦ (0.3,−0.2, 0.1)
Table 3.2

3D experiments - Computational domains and types of boundary conditions; r, θ and φ are
spherical coordinates and xC there are cartesian coordinates of the mass point souce.

2D experiments, the computational domain has been the annulus between two circles
and segment of this annulus, see Table 3.1. As the Dirichlet BC (1.3) on the upper
boundary (in the Exp. 5. on the side boundaries as well) the values of exact solution
of (1.1) (in the form u(x, y) = − ln r, where r is the distance from the mass point
source xC , i.e. r = |x−xC |) have been applied. As the Neumann/oblique BC on the
bottom boundary the derivative of this exact solution (which is equal to 1/r in radial
direction) has been considered.

In 3D numerical experiments, the computational domain has been a tesseroid
defined in Table 3.2. The Dirichlet BC (1.3) in the form of the exact solution of (1.1)
(i.e. u(x, y, z) = 1/r) has been applied on the upper and the side boundaries. As
the Neumann/oblique BC on the bottom boundary the derivative of exact solution
(equals to −1/r2 in radial direction) has been applied.

The numerical results have been compared with the exact solution. In Tables
3.3-3.10 the L2(Ω)-norm of differences between the exact and numerical solutions and
EOC of the methods are presented. All experimental results show EOC=2 for the
proposed methods.

3.1. 2D Case. In the first experiment we have considered combination of BCs,
on the upper boundary the Dirichlet BC and on bottom boundary the Neumann BC,
see Table 3.1. The point xC = (0, 0). The results can be seen in Table 3.3 and
Figure 3.1 a), EOC = 2. In these numerical experiments, the accuracy of solution
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depends only on the splitting in radial direction, i.e., we refine the grid only in index i
and j is arbitrary, see Table 3.3. Second experiment we tested an approach where

Combined boundary condition
Grid ||u− u||L2 EOC

64×j 9.344708.10−6 -
128×j 2.281765.10−6 2.034
256×j 5.637187.10−7 2.0171
512×j 1.400943.10−7 2.00858
1024×j 3.492142.10−8 2.00421

Table 3.3
L2(Ω)-norm and EOC for the 2D Exp 1. with standard Dirichlet - Neumann boundary condition.

the oblique vector ~s is projected to the normal vector ~nΓ and the value p cos θ, θ =
∠ (~s, ~nΓ) in considered as value of derivative in normal direction. This approach is
correct if we know the direction of the gradient and ~s = ∇u

|∇u| . In this experiment,

xC is shifted to (0.3,−0.1). The L2(Ω)-norm of differences between the exact and
numerical solutions and EOC of the method are shown in Table 3.4. On the contrary
with the previous experiments, now the accuracy of the solution depends on both
coordinates and more substantially on the radial direction. In the third experiment,

Oblique boundary condition
Grid ||u− u||L2 EOC

4×8 7.099696.10−3 -
8×16 1.875149.10−3 1.92075
16×32 4.6107913.10−4 2.02392
32×64 1.134551.10−4 2.02289
64×128 2.808830.10−5 2.01408

Table 3.4
L2(Ω)-norm and EOC for the 2D Exp 2. with oblique derivative boundary condition when the

oblique vector ~s = ∇u
|∇u| is projected to normal vector ~n with xC = (0.3,−0.1).

we have considered the oblique BC (1.2) on the bottom boundary without projection
to the normal but with splitting of the gradient to normal and tangential directions,
xC = (−0.1,−0.3). The result can be seen in Table 3.5 and in Figure 3.1 b). For the

Oblique boundary condition
Grid ||u− u||L2 EOC

8×16 1.195339.10−2 -
16×32 2.846202.10−3 2.07031
32×64 6.893848.10−4 2.04566
64×128 1.693563.10−4 2.02525
128×256 4.193662.10−5 2.01378

Table 3.5
L2(Ω)-norm and EOC for the 2D Exp 3. with oblique boundary condition experiment with

xC = (−0.1,−0.3).
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a) b)

Fig. 3.1. Graph of the 2D solution a) Neumann and Dirichlet BC b) Oblique and Dirichlet BC
on the bottom boundary

fourth numerical experiment we have the same BC as in the previous experiment, but
the oblique vector ~s has been given by rotation of ~s1 by 15◦ where ~s1 is the normalized
gradient vector of the exact solution. The displacement of the mass source has been
xC = (0.2, 0.4). The L2(Ω)-norm of differences between the exact and numerical
solutions and EOC of the method are shown in Table 3.6. In the last numerical 2D

Oblique boundary condition
Grid ||u− u||L2 EOC

4×8 3.035999.10−2 -
8×16 1.258422.10−2 1.27056
16×32 2.781355.10−3 2.1777
32×64 6.712759.10−4 2.05081
64×128 1.652955.10−4 2.02186

Table 3.6
L2(Ω)-norm and EOC for the 2D Exp 4. with oblique derivative boundary condition when the

oblique vector ~s does not have direction of the solution gradient.

experiment, see Table 3.1, we have considered the same oblique BC as in Exp 3.
and on the side boundaries the Dirichlet BC has been applied. The L2(Ω)-norm of
differences between the exact and numerical solutions and EOC of the method for
center point xC = (0.4,−0.3) are shown in Table 3.7.

Oblique boundary conditions
Grid ||u− u||L2 EOC

4×4 8.103634.10−4 -
8×8 1.331729.10−4 2.60527
16×16 2.564994.10−6 2.37627
32×32 5.556186.10−6 2.20679
64×64 1.289188.10−6 2.10763

Table 3.7
L2(Ω)-norm and EOC for the 2D Exp 5. oblique derivative boundary condition in experiment

on the segment of annulus.

3.2. 3D Case. In the first 3D experiment, similarly to above discussed 2D case,
the Dirichlet BC on the upper and planar boundaries has been considered and the Neu-
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mann BC, where oblique vector ~s is projected to normal vector ~n on bottom boundary
has been applied. The mass source has been xC = (−0.2, 0.1, 0.05). The results can
be seen in Table 3.8. In the second experiment, we have considered the oblique BC

Oblique boundary condition
Grid ||u− u||L2 EOC

1×1×2 1.50876.10−0 -
2×2×4 8.89055.10−2 4.08495
4×4×8 1.18641.10−2 2.90567
8×8×16 2.02324.10−3 2.55186
16×16×32 3.90073.10−4 2.37485

Table 3.8
L2(Ω)-norm and EOC for the 3D Exp 1. oblique derivative boundary condition when the oblique

vector ~s is projected to normal vector ~n with the mass center point xC = (−0.2, 0.1, 0.05).

(1.2) treated by (2.25) on the bottom boundary and the Dirichlet BC on the upper
and planar boundaries. The mass point center has been xC = (−0.2, 0.1, 0.25). The
result can be seen in Table 3.9. For the last 3D numerical experiment, we have the

Oblique boundary condition
Grid ||u− u||L2 EOC

1×1×2 1.55421.10−0 -
2×2×4 8.37978.10−2 4.21313
4×4×8 1.04018.10−2 3.01008
8×8×16 1.62235.10−3 2.68067
16×16×32 2.81640.10−4 2.52616

Table 3.9
L2(Ω)-norm and EOC for the 3D Exp 2. oblique boundary condition experiment with the shifted

center point xC = (−0.2, 0.1, 0.25).

same BCs as in the previous experiment, but the oblique vector ~s has been given by
rotation of ~s1 around z-axis by 15◦ where ~s1 is the exact solution unit gradient vector.
The displacement of the center point has been xC = (0.3,−0.2, 0.1). The L2(Ω)-norm
of differences between the exact and numerical solutions and EOC of the method are
shown in Table 3.10.

Oblique boundary condition
Grid ||u− u||L2 EOC

1×1×2 1.93856.10−0 -
2×2×4 9.55366.10−2 4.34279
4×4×8 1.21764.10−2 2.97196
8×8×16 2.09633.10−3 2.53815
16×16×32 4.54241.10−4 2.20634

Table 3.10
L2(Ω)-norm and EOC for the 3D Exp 3. oblique derivative boundary condition when the oblique

vector ~s does not have direction of the solution gradient.
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4. Conclusions. We have presented the novel algorithm for solving the oblique
derivative boundary value problem by the finite volume method in 2D and 3D do-
mains. In this approach, the oblique derivative in the boundary condition has been
decomposed into normal and tangential components. The proposed 2D and 3D nu-
merical schemes have been tested and numerical solutions have been compared with
the exact solutions. All numerical experiments show that the proposed numerical
scheme is second order accurate. In the near future, we would like to apply this
scheme in the field of physical geodesy to solve the fixed gravimetric boundary value
problem on the real Earth surface topography.
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