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Abstract: The paper presents the method of fundamental solutions (MFS) applied for global 

gravity field modelling. MFS as an inherent mesh-free method is used to derive the geopotential 

and its first derivatives from the second derivatives observed by the GOCE satellite mission, 

namely from the radial components of the gravity tensor. Unknown coefficients of the 

approximate solution by MFS are determined at the source points located directly on the Earth’s 

surface. Afterwards, the disturbing potential or gravity disturbance can be evaluated at any point 

above the Earth’s surface. To get their values on the Earth’s surface, singularities of the 

fundamental solutions need to be overcome. In this paper two strategies are used: (i) the source 

points are located on the fictitious boundary, which is situated below the Earth’s surface, or (ii) 

ideas of the singular boundary method that isolate the singularities are implemented. The paper 

studies how a depth of the fictitious boundary influences accuracy of the MFS solutions. All 

particular solutions are compared with the GOCO03S satellite-only geopotential model and the 

EGM-2008 combined model. Finally, the geopotential on the DTU10 mean sea surface is 

evaluated from the MFS solutions resulting in the W0 estimates. 

Key-words: Method of fundamental solutions, global gravity field modelling, 

GOCE measurements, geopotential on the mean sea surface, W0 estimates 

1 Introduction 

A unification of local vertical datums and establishment of the World Height 

System (WHS) is one of the main tasks of modern geodesy. It involves a 

determination of W0 as a reference value of the geopotential on the geoid. All 

recent W0 estimates are basically derived from the global geopotential models 

(GGMs) that are developed using the spherical harmonics (SH) approach, cf. 

(Burša et al. 2007), (Sánchez 2009), (Dayoub et al. 2012), (Čunderlík et al. 2014). 

However, the GOCE satellite mission, which is directly measuring the second 

derivatives of the geopotential, has brought new opportunities in applications of 

other numerical approaches for global gravity field modelling. In this paper the 
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method of fundamental solutions (MFS) is presented to derive the geopotential 

and its first derivatives on or above the Earth’s surface from the second 

derivatives observed by GOCE. 

The ideas behind MFS were primarily developed by V. D. Kupradze and 

M. A. Alexidze in the late 1950s and early 1960s (Kupradze and Alexidze 1964). 

However, MFS as a computational technique was proposed much later by 

R. Mathon and R. L. Johnston in the late 1970s (Mathon and Johnston 1977). In 

the 1990s, M. A. Golberg and C. S. Chen extended MFS to deal with 

inhomogeneous equations and time-dependent problems (Golberg and Chen 

1994). Recent developments indicates that MFS has become a useful tool for 

solving large variety of physical and engineering problems, cf. (Hon and Wei 

2005),  (Fan et al. 2009) or (Chen et al. 2011). To cure the problem of a fictitious 

boundary in MFS, some new techniques have recently been developed, e.g. the 

singular boundary method (SBM) (Chen and Wang 2010). 

In this paper MFS is applied to derive the disturbing potential and its first 

derivatives from the radial components Trr of the disturbing tensor observed by 

GOCE. Numerical experiments show how a depth of the fictitious boundary 

influences accuracy of the obtained MFS solution on or above the Earth’s surface. 

In case that the source points are located directly on the Earth’s surface, the ideas 

of SBM that isolate singularities of the fundamental solution (Gu et al. 2012) are 

applied. Finally, the geopotential on the mean sea surface is evaluated from 

different MFS solutions. It allows estimating the W0 values that can be considered 

independent from ones obtained from the SH-based GGMs.  

2 MFS for the potential problems 

MFS is a technique for the numerical solution of certain elliptic boundary 

value problems (BVPs) (Mathon and Johnston 1977). It belongs to the general 

class of the boundary collocation methods. Like the boundary element method 

(BEM), it is applicable when the fundamental solution of a partial differential 

equation (PDE) of interest is known. MFS was developed to overcome the major 

drawbacks of BEM, i.e., to avoid numerical integration of the singular 

fundamental solution by introducing a fictitious boundary (FB) outside the 

physical domain. In contrast to BEM, MFS is an inherent mesh-free method and 
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does not involve integral evaluation. Hence, it provides an efficient computational 

alternative for problems in higher dimensions with irregular domains. 

In the following we focus on the exterior potential problem in 3D that 

corresponds to the geodetic BVP. Let us consider the Laplace equation governing 

potential problems exterior a 3D domain  (the Earth) (Fig.1) 

 2 0, .u extΩ  x x , (1) 

with the following boundary conditions (BC) 

   , Du u Γ x x x  (Dirichlet BC), (2) 

      , N

u
q q Γ


  


x x x x
n

(Neumann BC), (3) 

 

where u is the potential field,  D and  N construct the whole boundary of the 

domain  and n devotes the outward normal.   

An approximate solution by MFS is expressed as a linear combination of the 

fundamental solutions with respect to different source points 
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where x
i
 is the i-th collocation point and s

j
 is the j-th source point,   j denotes the 

j-th unknown coefficient of the distributed source at s
j
, N represents the number of 

source points and  

 
1

, ,
4

G





i j

i j
x s

x s
 (6) 

is the fundamental solution of the Laplace equation in 3D, which represents the 

basis functions of the method. For a well-posed BVP, the unknown coefficients 

{ j}, j=1,…,N, can be determined by collocating N observation points with BC 

from Eq. (2) or (3). Once all the unknown coefficients { j} are solved, physical 

quantities at any point inside the physical domain (i.e. exterior  in our case) 

including its boundary can be easily evaluated from the field equations (4) or (5). 
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To avoid singularities of the fundamental solutions, the source points are 

located on the FB outside the computational domain. For the exterior BVP 

described in Eqs. (1-3), the FB is inside , i.e., below the Earth’s surface (Fig.1a). 

However, despite many years of great effort, a determination of the FB is largely 

based on experiences, especially for problems in complicated geometries and 

higher dimensions.  

3 MFS for gravity field modelling from the GOCE 

measurements 

The gravity field modelling is usually formulated in terms of the Laplace 

equation (1) for the disturbing potential T. The GOCE observations provide the 

second derivatives of the geopotential, or the disturbing potential, respectively. In 

this study, the radial components Trr of the disturbing tensor are used to derive the 

unknown coefficients  j at the source points s
j
 using the expression 

 
   2 2

1
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,

N

rr j

j

T G
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

 
 

 
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 (7) 

where 
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and ri denotes the radial vector at x
i
, dij = x

i
 – s

j
 and dij = dij represents the 

distance between the i-th collocation point and the j-th source point. Collocating N 

observation points with respect to N source points we get the linear system of 

equations  

1
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. (9) 

Since the GOCE observations are given efficiently far from the Earth 

(approximately 250 km above the Earth’s surface), the source points can be 
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located directly on the Earth’s surface considering its complicated topography. 

Such a constellation does not generate any singularities. The unknown 

coefficients { j} can be determined by solving the linear system of equations (9). 

Afterwards, the disturbing potential or its first derivatives can be easily evaluated 

anywhere above the Earth’s surface using Eq. (4) or (5). The problem with the 

singularities appears when computing the gravity field quantities directly on the 

Earth’s surface. In this case it is possible to use two different strategies: (i) to 

locate source points on the FB, which needs to be shifted below the Earth’s 

surface, or (ii) to apply ideas of SBM that isolate singularities of the fundamental 

solution at source points on the Earth’s surface. 

  In the first approach a main problem is to determine an optimal position of 

the FB. As mentioned earlier, this is largely based on experiences. Therefore, in 

the presented numerical experiments we will step by step change a depth of FBs 

testing how it influences the resulting MFS solution on the Earth’s surface. 

In the second approach the ideas of SBM (Chen and Wang 2010) are 

implemented to overcome singularities of the fundamental solution. Like MFS, 

SBM also uses the fundamental solution as the basis kernel function of its 

approximation. In contrast to MFS, the collocation and source points of SBM are 

coincident and they are all placed on the physical boundary (Fig.1b) avoiding any 

FB.  For the 3D exterior potential problem described in Eqs. (1-3), the SBM 

interpolation formulation can be expressed as  

   
1,

, ,
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j i ii
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 
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where uii and qii, named as the origin intensity factors, denote the singular terms 

G(x
i
, s

j
) and G(x

i
, s

j
)/n, respectively, i.e., the diagonal elements of the SBM 

interpolation matrix. These singularities need to be regularized using some special 

treatment. Applying the regularization technique proposed in (Gu et al. 2012) and 

omitting details described in this paper, the original singular term qii for the 

Neumann boundary equation (11) can be transformed into the regular term   
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where Pi, or Pj, is the area of the co-volume surrounding the collocation point x
i
, 

or the source point s
j
, respectively. To evaluate the origin intensity factor uii for 

the Dirichlet boundary equation (10), an inverse interpolation technique can be 

used. Due to the limited extend of this paper, the readers are kindly addressed to 

(Gu et al. 2012) for more details. 

Since the observations from GOCE are sufficiently far from the Earth’s 

surface, the unknown coefficients { j} can be determined from the linear system 

of equations (9). Afterwards, the origin intensity factors uii and qii need to be 

determined and finally Eqs. (10-11) can be used to evaluate the disturbing 

potential or its first derivatives at the source points directly on the Earth’s surface. 

In this way the problem of singularities can be overcome. 

4 Numerical experiments 

In the numerical experiments we have processed the GOCE measurements 

from its first 61 days period, i.e., from Oct 1 to Dec 1 2009. In particular, the 

radial components Vrr of the gravity tensor have been transformed to Trr of the 

disturbing tensor (Fig.2a) using parameters of the GRS-80 normal gravity field. 

Then the nonlinear diffusion filtering (Čunderlík et al. 2013) have been applied to 

reduce the noise included in the input data (Fig.2b). In the first experiment the 

source points have been located directly on the Earth’s surface with a resolution 

of 0.075 deg. It has corresponded to 5,760,002 points (N) regularly distributed 

over the Earth’s surface. To consider the real topography, the vertical position of 

the source points were generated from the SRTM30_PLUS global topography 

model (Becker at al. 2009).  

To get the linear system of equations (9), the same number of the input 

observations (collocation points) has been chosen. Their horizontal positions as 

well as ordering have been adopted from the source points. This has required an 

interpolation from the original GOCE measurements (firstly filtered by the 

nonlinear diffusion). To reduce enormous memory requirements for the full 

matrix in Eq. (9), an iterative approach for the elimination of the far zones’ 

interactions, primarily proposed for the direct BEM (Čunderlík and Mikula 2010), 
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has been applied. This approach together with a parallel implementation using the 

MPI procedures enables to reach such a high level of the resolution. The large-

scale parallel computations were performed on the cluster with 1 TB of the 

distributed memory. At first, the unknown coefficients { j} at the source points 

have been determined solving the linear system of equations (9). From these 

coefficients, the disturbing potential or its first derivatives can be evaluated at any 

point above the Earth’s surface. Since we have been interested in their values on 

the Earth’s surface, i.e., directly at the source points, the SBM strategy has been 

used (see Section 3). For this purpose the unknown origin intensity factors uii and 

qii have been determined (see Eq. (12)). 

Afterwards, the MFS approach based on the FB has also been used. A depth 

of the FB has been step by step changing, namely the vertical positions of the 

source points, while the input GOCE observations have remained the same. For 

every new position of the FB, new set of the coefficients { j} has been 

determined. From these coefficients, the disturbing potential at points on the 

Earth’s surface (with the same positions as in the first experiment) has been 

evaluated avoiding the problem of singularities.  

All particular solutions have been compared with two GGMs developed by 

SH-based approach, namely, with the GOCO03S satellite-only model up to degree 

250 (Mayer-Gürr et al. 2012) and EGM-2008 combined model up to degree 2160 

(Pavlis et al. 2012). Graphs in Figure 3 depict how statistical characteristics of the 

residuals are changing depending on the FB depth. The standard deviation (STD) 

of residuals is minimal in case of the depth 20 km. The closer to the Earth’s 

surface, the stronger an impact of the singularities becomes and the STD is 

asymptotically increasing. A special treatment of the singularities by the SBM 

approach slightly improve the obtained solution, however, an agreement with 

GOCO03S is worse than in case that the FB depth is from the interval 5 – 30 km. 

For the FBs deeper than 30 km, the STD is considerably increasing.  

On the other side, the overall mean value of residuals is changing minimally. 

For the FB depths from the interval 0 – 30 km, it changes less than 0.01 m
2
s

-2
 (1 

mm) (Fig.3). Considering the mean value over oceans only, it varies within 0.07 

m
2
s

-2
 (7 mm). The mean values over oceans also indicates that the W0 estimates 

evaluated from the MFS solutions will differ from one based on GOCO03S less 

than 0.06 m
2
s

-2
 and from other computed from EGM-2008 less than 0.1 m

2
s

-2
. 
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Figure 4 depicts the disturbing potential on the Earth’s surface obtained from 

the MFS solution (the FB depth = 20 km) and from GOCO03S up to degree 250 

as well as their comparison. Analogously, Figure 5 shows the first derivatives (the 

gravity disturbances) for both models and their comparison. Finally, the 

geopotential on the DTU10 mean sea surface model (Andersen 2010) is evaluated 

from the obtained MFS solutions (Fig.6). It allows estimating the W0 values for 

the selected integration area. Table 1 summarizes our W0 estimates from the MFS 

solutions for the different FB depths. These W0 estimates can be considered 

independent from ones obtained using the SH-based GGMs. In spite of quite large 

differences between the MFS solutions and GOCO03S in zones of abrupt changes 

of the gravity field, e.g. along edges of the lithospheric plates (Fig.4c, Fig.5c, 

Fig.6), the W0 estimates differs less than 0.1 m
2
s

-2
. 

5 Conclusions 

The paper demonstrates that the method of fundamental solutions is an 

efficient technique for global gravity field modelling. It has an advantage that the 

approximate solution by MFS satisfies the Laplace equation also in the 

computational domain with more complicated boundaries. There is no restriction 

to have spherical (or ellipsoidal) approximation of the Earth’s surface like in the 

SH-based approach. In contrast to BEM, MFS as a mesh-free method does not 

involve integral evaluations, which make it more efficient. On the other side, to 

obtain the gravity field quantities, it involves two computational steps. At first the 

unknown coefficients at the source points need to be determined and then the 

potential or its derivatives can be evaluated.  

The parallel implementation of MFS and the elimination of far zones’ 

interactions allow high-resolution modelling. In all presented numerical 

experiments the radial components of the gravity tensor are processed and the 

source points are distributed with the resolution of 0.075 deg. It provides precise 

global gravity field models that are in a good agreement with the SH-based 

GGMs, e.g. GOCO03S and EGM-2008. The overall mean values of residuals are 

smaller than 0.04 m
2
s

-2
. The mean values over oceans do not exceed 0.1 m

2
s

-2
. 

Hence, the W0 estimates evaluated from the MFS solutions differ from ones 

estimated from GOCO03S or EGM-2008 less than 0.1 m
2
s

-2
. Such small 

differences indicate a feasibility of the W0 estimates for the realization of WHS. 
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a)        b) 

 

 

 

 

 

 

Fig.1: Distribution of the source points for the exterior potential problem using a) the method of 

fundamental solution (MFS), and b) the singular boundary method (SBM) (from the source: (Gu et 

al. 2012)) 
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Fig.2: a) The GOCE observations – the radial components Trr of the disturbing tensor, and b) after 

reducing noise by the nonlinear diffusion filtering  
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Fig.3: An impact of the depth of the fictitious boundary on the obtained MFS solutions – statistical 

characteristics of residuals between the MFS solutions and the GOCO03S model up to degree 250 

and the EGM-2008 model up to degree 2160 
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a) 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

c) 

 

 

 

 

 

 

 

 

 

 

Fig.4: The disturbing potential on the Earth’s surface obtained from a) the MFS solution with the 

fictitious boundary in the depth 20 km, b) from GOCO03S model up to degree 250, and c) the 

residuals between both models 
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a) 
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Fig.5: The gravity disturbances on the Earth’s surface obtained from a) the MFS solution with the 

fictitious boundary in the depth 20 km, b) from GOCO03S model up to degree 250, and c) the 

residuals between both models 
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Fig.6: The geopotential on the DTU10 mean sea surface evaluated from a) the MFS solution with 

the fictitious boundary in the depth 20 km, and b) from GOCO03S model up to degree 250 (the 

constant 62636800.0 m
2
s

-2
 is removed). 
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Table 1. W0 estimates evaluated on the DTU10 mean sea surface model (integration area: 82°S – 

82°N) from the MFS solutions with the different depths of the fictitious boundaries (FB), and from 

the GOCO03S and EGM-2008 geopotential models (W0 units: m
2
s

-2
)  

FB depth MFS solution 
GOCO03S 

(SH up to d/o 250) 

EGM-2008 
(SH up to d/o 2160) 

0 km 62 636 854.01 

62 636 854.00 62 636 853.96 

2 km 62 636 853.98 

5 km 62 636 854.02 

10 km 62 636 854.03 

20 km 62 636 854.05 

30 km 62 636 854.06 

100 km 62 636 854.22 

 

 

 

 

 

 


