Noname manuscript No.
(will be inserted by the editor)

On an iterative approach to solving the nonlinear
satellite-fixed geodetic boundary-value problem

Marek Macak - Karol Mikula :
Zuzana Minarechova - Rdébert Cunderlik

Received: date / Accepted: date

Abstract The paper deals with an iterative treatment of solving the nonlin-
ear satellite-fixed geodetic boundary-value problem (NSFGBVP). To that goal
we formulate the NSFGBVP consisting of the Laplace equation in 3D bounded
domain outside the Earth. The computational domain is bounded by the ap-
proximation of the Earth’s surface where the nonlinear boundary condition
(BC) with prescribed magnitude of the gravity vector is given and by a spher-
ical boundary placed approximately at the altitude of chosen satellite mission
on which the Dirichlet BC for disturbing potential obtained from the satellite
only geopotential model is applied. In case of local gravity field modelling, we
add another four side boundaries where the Dirichlet BC is prescribed as well.
The concept of our iterative approach is based on determining the direction
of actual gravity vector together with the value of the disturbing potential.
Such an iterative approach leads to the first iteration where the classical fixed
gravimetric boundary-value problem with the oblique derivative BC is solved
and the last iteration represents the approximation of the actual disturbing
potential and the direction of gravity vector. As a numerical method for our
approach, the finite volume method has been implemented. The practical nu-
merical experiments deal with the local and global gravity field modelling. In
case of local gravity field modelling, namely in the domain above Slovakia, the
disturbing potential as a direct numerical result is transformed to the quasi-
geoidal heights and tested by the GPS-levelling. Results show an improvement
in the standard deviation for subsequent iterations in solving NSFGBVP as
well as the convergence to EGM2008. The differences between the last and
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the first iteration, which represent the numerically obtained linearization er-
ror, reach up to 10 cm. In case of global gravity field modelling, our solution
is compared with the disturbing potential generated from EGM2008. The ob-
tained numerical results show that the error of the linearization can exceed
several centimeters, mainly in high mountainous areas (e.g. in Himalaya region
they reach 20 cm) as well as in areas along the ocean trenches (varying from
—2.5¢cm to 2.5¢cm).

Keywords Nonlinear boundary value problem - Finite volume method -
Iterative approach

1 Formulation of the nonlinear satellite-fixed geodetic
boundary-value problem

The nonlinear geodetic boundary-value problem (BVP) has been of interest of
many scientists and researches. A uniqueness theorem for the fixed gravimetric
BVP (FGBVP) was first given by Backus (1968). Later Koch and Pope (1972)
presented a uniqueness proof for the nonlinear geodetic BVP. The free non-
linear BVP exactly solved by metric continuation was discussed by Graferend
and Niemeier (1971) as well as by Graferend et al. (1989). Then Bjerhammar
and Svensson (1983) used the general implicit function theorem and gave a
solution of the existence and uniqueness problem in the nonlinear case. Ex-
panding the nonlinear boundary condition into a Taylor series, based upon
some reference potential field approximating the geopotential, was shown by
Heck (1989). Sacerdote and Sansé (1989) further developed the idea used by
Bjerhammar and Svensson for an iterative solution and they found explicit
convergence conditions. They calculated the respective constant governing the
convergence in the ideal case of a spherical boundary. Finally, we should men-
tion authors Georgio Diaz, Jesis Diaz and Otero who showed the existence
and uniqueness of a viscosity solution for the Backus problem (Diaz et al.,
2006; Diaz et al., 2011).
Let us consider the non-homogeneous elliptic equation of second order out-
side the Earth
AW (x) = 2w?, (1)

where W (x) is the actual gravity potential and w is the spin velocity of the
Earth. The norm of gradient of the gravity potential W (x) is

VW (x)| = g(x), (2)

where g(x) denotes the magnitude of so-called total gravity vector. When
g(x) is prescribed on the Earth’s surface, Eq. (1) with BC (2) represents the
nonlinear geodetic BVP for the actual gravity potential W (x).

The actual gravity field can be expressed as a sum of the selected model
field and the remainder of the actual field (Hofmann-Wellenhof and Moritz,
2005), for corresponding potentials we can write

W(x) =U(x) +T(x), 3)
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where U(x) is the normal gravity potential and T'(x) the disturbing potential.
When the model field is generated by a massive ellipsoid rotating with the
Earth with the same spin velocity w, its constant surface potential is equal to
geopotential Wy and its mass is the same as the mass of the Earth, then the
disturbing potential T'(x) outside the Earth will satisfy the Laplace equation
AT(x) = 0. It follows from the fact that T(x) does not have any centrifugal
component since the centrifugal component of the Earth is the same as the
centrifugal component of the chosen model.

Now let us consider the bounded domain 2 depicted in Fig. 1. Such a
domain is set in the external space above the Earth where the bottom surface
I' C 912, where 0f2 denotes a boundary of (2, represents a part of the Earth’s
surface and the upper part of the boundary is at altitude of the chosen satellite
mission. On the lower part of the boundary the nonlinear BC coming from
(2) is given. On the upper spherical part of the domain as well as on the
side boundaries, the Dirichlet-type BC (Eymard et al., 2001) obtained from
satellite gravity missions is prescribed. That allows us to fix our solution to
the satellite data. It is worth noting that another BC (Neumann or Newton
BC) derived from satellite gravity missions suitable for the elliptic equation of
second order might be taken into account as well.

; ﬁw

Fig. 1 Sketch of the computational domain 2 for a) global numerical experiment, b) local
numerical experiment. The dotted boundary I" represents the part of the Earth’s surface, ¢
and A denote latitude and longitude and H denotes the height above WGS84.

b)

Then our nonlinear satellite-fixed geodetic BVP (NSFGBVP) for the dis-
turbing potential T'(x) is formulated in the following form

AT(x) =0 x€ {2, (4)
VT'(x)+U(x))| =g(x) xel, ()
T(X) = TSAT(X) xeco—1T. (6)

where Tg a7 is the disturbing potential generated from a chosen satellite only
model based on the spherical harmonics. It is worth to note that we are looking
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for a solution in a bounded domain (2, so we do not deal with its regularity at
infinity. The influence of BC applied on side boundaries has been studied by
Fagkova et al. (2010).

In general, one can write the norm of the gradient of the gravity potential
in the form

_ VW(x) _ N

By inserting (7) in equation (5), we obtain

V(T(x) + U(x))

NI T UG)] CLE)FUE) =9(x) (8)

and if we denote

Y = N0+ UG ©)
we can rewrite the BC (5) as
V(%) V(T(x) = g(x) ~ v(x) - V(U(x)) x€T. (10)

Since the unit vector v(x), defining the direction of the actual gravity
vector, is unknown and depends on T'(x), BC (10) is still nonlinear, but its
form allows to use an iterative approach for determining v(x) and T'(x) such
that (4)-(6) is fulfilled. The iterative procedure for solving NSFGBVP will be
defined as follows

AT (x) =0 x €0, (11)
v(x) - V(T (x)) = g(x) —v"(x) - V(U(x)) x€T, (12)
T (x) = Tsar(x) x€92 1T, (13)
forn=20,1,2,..., where

and we start the iterations by choosing T%(x) = 0, i.e. W%(x) = U(x) and
correspondingly for v¥(x) we get

VO(x) = =t =s(x), (15)

where s(x) represents the direction of the normal gravity vector. One can
see that in every iteration we solve the geodetic BVP for T"*!(x) with pre-
scribed oblique derivative vector v™(x). In the first step we solve the linearized
fixed gravimetric BVP (FGBVP) (Koch and Pope, 1972; Holota, 1997, 2005;
Cunderlik et al., 2008; Faskov4 et al., 2010) with the oblique derivative given
by

S(x) - V(T*(x)) = g(x) — 7(x) = dg(x), (16)
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where v(x) = |V(U(x))| and denotes a magnitude of the normal gravity vector
and dg(x) denotes the gravity disturbance. In further iterations we improve the
direction of the unit vector v(x). Such a process reduces the linearization error.
Since we solve the problem iteratively, we need a stopping criterion. To that
goal we use a difference of two successive iterations and stop the procedure, if
in each point the inequality

IT"(x) — T (x)| < &, (17)

holds, where £ means a user-specified small real number. The last iteration
represents our approximation of the disturbing potential T(x) and direction
of gravity vector v(x) in (4) - (6), and the sum T"*!(x) + U(x) represents
the approximation of actual gravity potential W !(x) in every point of the
computational domain 2.

2 Numerical solution of the nonlinear satellite-fixed geodetic
boundary-value problem

We can see that in each step of our iterative process (11)-(13) we deal with
the oblique derivative BVP defined as

AT(x) =0 x€ {2, (18)
v(x) - V(T(x) = 9(x) = v(x) - V(U(x)) = a(x), x€T, (19)
T(x) =Tgar(x) x€d—1T. (20)

To solve (18)-(20), we have chosen the finite volume method (FVM), (Ey-
mard et al., 2001). In FVM we divide the computational domain {2 into finite
volumes p, multiply the Laplace equation by minus one and integrate the re-
sulting equation over each finite volume with a use of the divergence theorem
that turns the volume integral into the surface integral,

—/AT dxdydz = —/VT.n do, (21)
P op

from where we get the weak formulation of the equation (18) in the finite

volume p
oT

o do = 0. (22)
op

Let ¢ € N(p) be a neighbour of the finite volume p, where N(p) denotes all
neighbours of p. Let T}, and T, be approximate values of T"in p and ¢, e, be a
boundary of the finite volume p common with ¢, n,, be its unit normal vector
oriented from p to ¢, m(ep,) is the area of e,,. Let x, and z, be representative
points of p and g respectively and dp, their distance. If we approximate the
normal derivative along the boundary of the finite volume p by

or _T,-T,
Onpq dpq ,

(23)
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we obtain from (22) and (23) the following equation for every finite volume p

m(e
> Mol 1)~ (24)
geN(p) 71

which forms together the linear system of algebraic equations. The term %’;‘1)
defined on sides of the finite volume p is referred to as the transmissivity
coefficient (Eymard et al., 2001). Then we define indices i = 1,...,ny, j =
1,...,n2 and k = 1,...,n3 in the direction of the longitude A, latitude ¢ and
height h, where ni, no and n3 denote the numbers of dicretisation intervals
in zonal, meridional and height’s direction, respectively. In this way we obtain
the linear system of equations that can be written in the form

PijiTije — WigkTi-1jk — EijkTivjk — NijwTij+1,6 —
—=SiikTi -1,k — Ui jkTijk+1 — DijiTije—1 =0, (25)

where P; 1, Wik, i ik, Nijk, Sij ks Uik and D; ;. are transmissivity co-
efficients and their derivation can be found in Macdk et al. (2012).

The system (25) must be accompanied by the boundary conditions. In case
of the Dirichlet BC, we prescribe the value of T, on the boundary, while in case
of the oblique derivative BC, a special treatment is needed. For the bottom
boundary, when k = 1, we add new finite volumes p signed by index k = 0.
Then we split the gradient of T'(x) in (19) into one normal and two tangential
directions

oT oT oT

VT = (VTI’I)II + (VTtl)tl + (VTt2)t2 = —n-++ 71]1 +

on ot 872t2’ (26)

where n is the unit normal vector and t1, t2 are linearly independent unit
tangent vectors to I' C 2 C R®. So the BC (19) is transformed into the form

or or or
%(n.v) + a—tl(tl.v) + 8—t2(t2.v) =a. (27)

Then we approximate the normal and tangential derivatives according to
notations depicted in Fig. 2

or Tp-Tp o Tgn —Tws T Twn —Tgs
8’” |XD—XP|7 8t1 ‘XEN_XWSV 8t2 |XWN_XES|’

where we have denoted values T; ; ,—1 and T; ; ; by Tp and Tp, respectively.
Values Ten, Tws, Twn, Trs are obtained as follows

Tige +Tij—1,6 tTije—1+Tij—1k—1+Tic1 56 T Tic1 -1,k T Tic1,5,k—1 + Tic1,5—1,k—1

TWN = 5
T Tigok Y i1,k Y Tig k41 + Tij—1k+1 T Tic1,5,6 Y Tic1j—1,6 Y Tic1,5,k41 F Tio1,5-1,k+1
EN =
” .
T Tigke T Tijt1e ¥ Tigb—1 + Tijt1,k—1 + Tic1,5,k T Tic1,541,6 F Tio1,5,6—1 + Tic1, 41,61
ws = N

8
Tigk t Tig1ke F Tkt T it k41t Tt Y Tic141,k  Tic1,5,k41 + Tic 1,541,641
" ,

Tegs =
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Fig. 2 Brief illustration of the computational grid for an approximation of the oblique
derivative. a) Tjj;i, denotes the value of the disturbing potential in the center of volume.
Tws,Trs, TEn, Tw N are values of the disturbing potential in the vertices. Vectors t; and
t2 denote independent tangent vectors to I and n the normal vector to I'. b) x;;; denotes
position vector of the center of volume and xw s, Xgs, XEN, Xw N are values of the position
vectors of the vertices.

and Xp,Xp,XpgN,Xws,XWwN,Xgs are their corresponding position vectors,
see Fig. 2. More details can be found in Macék et al. (2012). Then the final
discrete form of the oblique derivative BC is given by
v-V(T(x)) ~ Tp—Tp nv)+ M(
|xp — xp]| IXEN — Xws|
Twn — Tes (

tl.V) —+

te2.v) = a.
Ixwn — Xgs|

3 Numerical experiments

The local numerical experiment was performed in the domain above Slovakia
bounded by ¢ € (47.0°,50.5°) and A € (16.0°,23.0°). The bottom boundary
was created using heights generated from SRTM30 PLUS (Becker et al., 2009)
and the upper boundary was at the height of 240 km above WGS84, corre-
sponding to an average altitude of the satellite orbit. The number of finite
volumes was 1000 in height, 630 in meridional and 840 in zonal directions, i.e.
the resolution with respect to latitude and longitude was 30” x 20”. We started
our computations by solving the linearized FGBVP where the surface gravity
disturbances were applied on the bottom boundary I'. They were generated
from an available dataset of terrestrial gravity data in Slovakia (Grand et al.,
2001) while ellipsoidal heights of gravimetric measurements were computed
from levelling heights using EGM2008 (Pavlis et al., 2012). On the upper
and side boundaries, the disturbing potential generated from the GOCO03s
satellite-only model (Mayer-Giirr et al., 2012) was prescribed. Computations
were performed on 30 processors using 78 GB of distributed memory taking ap-
proximately 5 hours of total CPU time per processor. To reach the prescribed
stopping criterium ¢ = 1073[m?2s72], 10 iterations were needed. Results are
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Fig. 3 a) Quasigeoidal heights ([m] obtained by solving the NSFGBVP, b) Differences in
¢[m] between 10" and 1°¢ iteration. Red crosses denote the distribution of 61 GPS/leveling
points.

Table 1 Statistics of residuals [m] between our NSFGBVP solution and quasigeoidal heights
obtained by GPS/levelling at 61 points in the area of Slovakia.

15t jter.  5%M iter. 8P iter. 10'M iter. EGM2008

Min. value 0.151 0.209 0.229 0.248 0.301
Mean value 0.284 0.325 0.348 0.352 0.437
Max. value 0.422 0.459 0.476 0.493 0.584
St. deviation 0.055 0.049 0.047 0.046 0.043

presented in Table 1 and Fig. 3. One can observe an improvement in the stan-
dard deviation for subsequent iterations in solving NSFGBVP (Tab. 1) as well
as the convergence to EGM2008. The differences between the 10** and 1%
iteration, which represent the numerically obtained linearization error, reach
up to 10 cm.

The global numerical experiment dealt with the high-resolution global grav-
ity field modelling in the computational domain {2 bounded by the bottom
boundary approximating the real Earth’s surface created by using heights
generated from SRTM30 PLUS and by a surface at height of 240 km above
WGS84 corresponding to the average altitude of satellite orbit. The number
of divisions was 4320 x 2160 x 600 leading to the resolution 5 x 5'x 400 m.
Again we start with the linearized FGBVP consisting of gravity disturbances
interpolated from the DTU10-GRAV gravity field model (Andersen, 2010) and
applied on the bottom boundary. On the upper boundary the disturbing po-
tential generated from GOCOO03s was prescribed. The stopping criterium was
€ = 1073[m?s72] and again, 10 iterations were needed. The FVM solutions
obtained in each iteration are compared with EGM2008. Statistical charac-
teristics of residuals are presented in Table 2. Figure 4 depicts differences
between the 10*" and 1°¢ iteration. They represent the numerically obtained
linearization error in the linearized FGBVP. One can observe that our iter-
ation approach improves solution mainly in areas of high mountains (e.g. in
Himalaya region they reach 20 cm) as well as in areas along the ocean trenches
(varying from —2.5cm to 2.5cm).
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Fig. 4 Differences in T[m?s~2] between 10" and 15¢ iteration, representing the numerically
obtained linearization error.

Table 2 Statistics of residuals [m?s 2] between the disturbing potential obtained by solving
NSFGBVP and the disturbing potential generated from EGM2008 in the global experiment.

Min. value Mean value Max. value St. dev.
Tter. 15t 10th 15t 10tk 15t 10th 15t 10th

TOTAL -2.150 -1.985 0.004 0.001  6.143 4.158 0.501 0.419
SEA -0.705 -0.632 -0.021 -0.011 1.131 1.019 0.206 0.199
LAND -2.150  -1.985  0.035 0.029 6.143 4.158 0.855 0.768

4 Summary and conclusions

We have presented an iterative approach to solving the nonlinear satellite-
fixed geodetic boundary-value problem (NSFGBVP) defined in this paper. The
NSFGBVP has been solved by the finite volume method, where the direction
of the actual gravity vector as well as the disturbing potential are updated in
each iteration. In the first iteration, the linearized FGBVP is solved together
with the oblique derivative problem. Next iterations treat its numerically ob-
tained linearization error. The obtained numerical results show that the error
of the linearization can exceed several centimeters, mainly in high mountain-
ous areas and along ocean trenches. This indicates that for precise gravity field
modeling it is necessary to deal with the nonlinear geodetic BVPs avoiding
the linearization error. Presented numerical experiments show that the pro-
posed iterative approach converges while the study of its convergence from
theoretical point of view will be a task of our future research.
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