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Abstract. The paper presents a high-resolution global gyrdigtd modelling by the boundary element
method (BEM). A direct BEM formulation for the Laae equation is applied to get a numerical
solution of the linearized fixed gravimetric boungaalue problem. The numerical scheme uses the
collocation method with linear basis functionsinolves a discretization of the complicated Eaxth’
surface, which is considered as a fixed boundamgreH3D positions of collocation points are
simulated from the DNSCO08 mean sea surface at ecaaa from the SRTM30PLUS_V5.0 global
topography model added to EGM96 on lands. Highgoerdnce computations together with an
elimination of the far zones’ interactions allowery refined integration over the all Earth’'s suga
with a resolution up to 0.1 deg. Inaccuracy of #ygproximate coarse solutions used for the
elimination of the far zones’ interactions leadsatdong-wavelength error surface included in the
obtained numerical solution. This paper introduaesiterative procedure how to reduce such long-
wavelength error surface. Surface gravity distudearas oblique derivative boundary conditions are
generated from the EGM2008 geopotential model. Nioale experiments demonstrate how the
iterative procedure tends to the final numericdlithons that are converging to EGM2008. Finally the
input surface gravity disturbances at oceans goaced by real data obtained from the DNSCO08
altimetry-derived gravity data. The ITG-GRACEO33eilde geopotential model up to degree 180 is
used to eliminate far zones’ interactions. Thelflrigh-resolution global gravity field model withe
resolution 0.1 deg is compared with EGM2008.

Keywords: Global Gravity Field Modelling — Fixed Gravimeti8oundary Value Problem —
Boundary Element Method — Elimination of Far Zonkderactions — lterative Reducing of
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1 Introduction

Precise global gravity field modelling is mainlyrfsgmed by spherical harmonics
(SH). Satellite missions that permanently monitdorag-wavelength part of the gravity field
yield the satellite geopotential models. Here thefftcients of lower degree and order are
very precisely obtained, however overall accuratysuch satellite models is usually not
sufficient for some investigations in geodesy, day.the vertical datum problem and a
unification of vertical systems. For such purpoaehort-wavelength part of the gravity field
(considered in a global sense) needs to be detedras precise as possible. For SH-based
methods, that use basis functions with the globppert, it means a sophisticated evaluation
of the higher degree coefficients. Here recentlgased EGM2008 up to degree 2160 (Pavlis
et al. 2008) represents a significant improvemantresolution and precision of the
geopotential models.

Nowadays, an efficiency of numerical methods like boundary element method
(BEM), finite element method (FEM) or finite volunmethod (FVM) has rapidly increase
with a development of HPC (high-performance commtiacilities. Opportunities for large-
scale and parallel computations make these metapdsicable also for the precise global



gravity field modelling. In contrary to the methathat use global basis functions like SH, the
aforementioned numerical methods allow to use Hasigtions with local supports like finite
elements. It has an advantage, that a succesdwement of the discretization is very
straightforward and in general improves precisibnwmerical results. The price to be paid is
large memory requirements. This drawback can becowee by parallel computing and
compression techniques like the fast multipole meétfFMM) (Greengard and Rokhlin
1987), panel clustering (Hackbusch and Nowak 198&jyelet techniques (e.g. (Mallat,
1989), (Barthelmes et al. 2004)) and others, engtemative treatment for the elimination of
far zones’ interactions introduced in this paper.

The first applications of FEM to the gravity fieldodelling was given by Meissl
(1981) and Shaofeng and Dingbo (1991). Recently Fshd FVM applied in physical
geodesy have been discussed in (FasSkova et al) 2007(Faskova 2008). In case of BEM,
the first application was given by Klees (1992).isThpproach based on the indirect BEM
formulation and the Galerkin BEM was gradually exted (Lehmann and Klees 1996),
(Lehmann 1997), (Klees, 1998) until the sophisédakevel (Klees et al. 2001) where the
panel clustering and FMM were implemented to redaceumerical complexity of BEM.
Later on, the direct BEM formulation for the fixegtavimetric boundary-value problem
(FGBVP) based on the collocation with linear bdsisctions was published i€ (nderlik et
al. 2008). Here an elimination of far zones’ int#i@ns using approximate coarse solutions
was introduced to reduce large memory requiremémthis paper we complete such simple
elimination approach by an iterative procedure thatecessary to reduce a long-wavelength
error surface that arises from inaccuracy of appmaie values obtained from numerical
solutions on coarser grids or from the satellitepgeential models. Results of the numerical
experiments show how the iterative procedure resltlue error.

A goal of this paper is also to present a higtoh@ion numerical solution to the
linearized FGBVP using the direct BEM formulatiamdanew sources of gravity data, namely
the DNSCO08 gravity field model (Andersen at al. 20Ghe EGM2008 geopotential model
(Pavlis et al. 2008) and the ITG-GRACEOQ3S satefjgepotential model (Mayer-Gurr 2007).
An access to HPC facilities, parallel computing #mel elimination of far zones’ interactions
allow us to reduce enormous memory requirementstamlincrease a level of discretization
up to 0.1 deg, which is comparable with a resotuted EGM2008. Since the DNSCO08
altimetry-derived gravity data represents real tnpata at oceans, the high-resolution
numerical solution obtained by BEM is compared v&BM2008, the most detailed global
gravity field model at present.

Our motivation to work in the framework of the fckgravimetric BVP results from
the fact that surface gravity disturbances are alglronsistent and fully independent from
levelling. So far, such approach represents anlim®n since a majority of terrestrial
gravimetric measurements collected for decades Hsmeen accompanied by levelling.
However, shifts and tilts of local vertical datumake gravity anomalies globally inconsistent
that can mislead the precise global solutions baseditegration over the Earth’s surface. In
contrary, the precise 3D positioning by GNSS hasupht a striking advantage that all
terrestrial gravity data can have the consistertioa information. Such benefit is promising
for precise gravity field modelling in future andtivates to solve the fixed gravimetric BVP.

2 The direct BEM for the linearized fixed gravimetric BVP
Let us briefly outline the direct BEM formulatiororf FGBVP. The linearized FGBVP

represents an exterior oblique derivative problemthe Laplace equation, cf. (Koch and
Pope 1972), (Bjernhammar and Svensson 1983) ofgferal 1989)
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whereT is the disturbing potential at any poktdg is the surface gravity disturbance, the
domain 2 represents the body of the Earth with its boundafthe Earth’s surfacey, , ) is
the inner product of two vectors and

S(x) = =JUX) / |DUX)|, xr, (4)

whereU is the normal gravity potential. Eq. (2) represetite oblique derivative boundary
condition (BC) as the normal to the Earth’s surfdcdoes not coincide with the vecter
defined by Eq. (4).

The direct BEM formulation for the Laplace equatieads to a boundary integral
equation (BIE) that can be derived using Greenigltidentity or through the method of
weighted residual, cf. e.g. (Brebbia et al. 198d)®chatz et al. 1990). A main advantage
arises from the fact that only the boundary ofgbkition domain requires a subdivision into
its elements. Thus the dimension of the problerefiectively reduced by one. The direct
BEM formulation applied to the linearized FGBVPEQ. (1-3) results in BIE in the form
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wheren, is the normal to the boundary (the Earth’s surface) and the kernel functi®n
represents the fundamental solution of the Lapéagetion,

Gk, y) = (@mfx-y1)*, X,y OR. (6)

In order to handle the oblique derivative problera use the same simplification as we
proposed inCunderlik et al. 2008). According to the obliqueidative BC in Eq. (2T (x)
projected tos(x) equals to &(x). Then the normal derivative teradl/oh, in BIE (5) is
approximately equal todg(x)cosax), where(x) is the angle/ (nAx), s(x)). Let us note that
this term represents the projection of the veelfk)s(x) (not exactly of the vectarT (x)) to

the normalnAx). In this way the oblique derivative BC in Eq. (&)incorporated into the
direct BEM formulation in BIE (5). Such approaclcludes an error from neglecting the
tangential components of the oblique derivativeother approach based on a decomposition
of the oblique derivative into the normal and tawtge components is described in e.g. (Balas
et al. 1989).

As a numerical technique we use the collocationhogktwith linear basis functions.
(Remark: in our approach we use the collocatiompiteeshe fact that there is only numerical
evidence and no mathematical prove of convergehdkeocollocation for the oblique-type
integral equation of the second type.) Such cotlonainvolves a discretization of the
complicated Earth’s surface by a triangulation e topography and approximations of the
boundary functions by a linear function on eacangular panel using linear basis functions.
It means the piecewise linear polynomials defineadte planar triangular panels are being
used, where vertices of this triangulation represea collocation points. In such a way we
get a discrete form of BIE (5) that subsequentilds a linear system of equations,
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wheret is the vector of unknown disturbing potential la¢ tollocation points andj is the
vector of the input surface gravity disturbancebe Tcoefficients of matricedd and L
represent integrals of the discrete form of BIE (bat need to be computed using an
appropriate discretization of the integral opemsitdor more details sed€ (nderlik et al.
2008). Since the kernel functions in BIE (5) dependdirect distances only, components of
both matricesM andL are given only by the geometry of the fixed Eathurface, i.e. they
are invariant with respect to the input BC. In case we consider the oblique derivative BC
in EqQ.(2), or rather the Neumann BC using the ah@mtioned projection. Then matri
represents a system matrix, while the known vectok &g is given on the right-hand side of

Eq.(7).

3 Experimental order of convergence

In order to illustrate the order of convergencéhef numerical scheme, we perform the
following experiment. Let us suppose the gravitaiopotential generated by an artificial
sphere. Let this sphere have parameters adopted the real Earth, i.e. the geocentric
gravitational constanGM =398 600.5 kris® and the radius R =6 371 km. Hence, the
gravitational potential on the sphere surface eqtmGM/R = 62.564 824 988 kfrs? (the
exact solution) and the Neumann BC equalsGMAR = -9.82 m.8. Then we perform
numerical experiments by BEM for different levefdtwe discretization of the sphere.

Now let us assume that the error of the schemernmeshorm is proportional to some
power of the mesh sizg i.e., Error(h) = Ch? with a constan€. Halving the mesh size we
get Error(h/2) = C(h/2¥, from where we can simply extract= logx(Error(h)/ Error(h/2)).
The a is called the experimental order of convergenc®(E and can be determined by
comparing numerical solutions with the exact sohsi Table 1 shows a bias of the obtained
numerical solutions, the L2-norm of residuals frra exact solution and EOC. It is evident
that the numerical shceme by the direct BEM is sdarder accurate (Tab.1).

4 Elimination of far zones’ interactions

The system matri¥ is dense and nonsymmetric, therefore a successfivement of
the discretization leads to large memory requirdmemhis drawback can be efficiently
overcome by parallel computing and by compressexhriques like the fast multipole
method (FMM) (Greengard and Rokhlin 1987), paneistdring (Hackbusch and Nowak
1989), wavelet-based compression techniques (dajlat, 1989), (Barthelmes et al. 2004))
and others. In C(underllk et al. 2008) we proposed a simple elinibmatof far zones’
interaction using approximate values of the unknadisturbing potential from numerical
solutions on coarser grids or from the known geepidl models. It means, considering
properties of the kernel functia#z/oh- in BIE (5), all the matrix components correspoigdin
to far zones’ interactions can be multiplied by #qgproximated values and passed to the
vectorf on the right-hand side. In this way the denseesysinatrix is truncated into the
sparse one. Such approach can rapidly reduce haegeory requirements, although the CPU
time consumption remains almost unchanged. In sapproach inaccuracy of the
approximate values can yield a long-wavelength resarface (LWES) included in the
obtained numerical solution. This LWES can be redugsing an iterative procedure

Mz t = f - Mgz t7, (8)

whereMg; is the matrix of far zones’ interactiodyz = (M - Mgy) is the new sparse system
matrix including only components of near zonesérattlons the vectar' represents the
unknown disturbing potential in thieth iteration anct " includes the approximate values



obtained from the previous iterative step. In tingt fterative step the approximate values can
be obtained from numerical solutions by BEM on seargrids or from the known
geopotential models. In this paper we deal with edcal experiments showing how LWES
of the obtained numerical solutions is reducedheyiterative procedure (8) tending to certain
values. We experimentally test such tending foiedgint levels of the discretization, different
distance criteria for far zones and different searof the approximate values used for far
zones' interactions in the first iterative step.

5 High resolution gravity field modelling

Next numerical experiments deal with the globalgyafield modeling. The Earth’s
surface as a fixed boundary is approximated byiandulated surface. Vertices of this
triangulation represent collocation points. Thearibontal positions are generated by the
developed algorithm(underlik et al. 2002). Vertical positions are iptated from the
following datasets. At oceans/seas we use the DISG€an sea surface (Andersen et al.
2008). On lands we add the SRTM30_PLUS V5.0 gldbpbgraphy model (Becker at al.
2009) to the EGM-96 geoid heights (Lemoine et &R8). In this way we get geocentric
positions of the collocation points, i.e. the psecBD position of the approximated Earth’s
surface.

In our numerical experiments we use different Is\a#lthe discretization according to
the available internal memory of our cluster (12B f@r long jobs, exceptionally 256 GB for
short jobs). Table 2 depicts the used discretinatievels and corresponding memory
requirements in case of the dense system matrigrahe sparse one specifying the distance
criterion for far zones. This criterion is chosenorder not to overstep the available memory
limit 128 GB taking into account memory requirengemiecessary for auxiliary variables
(Tab.2, the last three columns).

All numerical experiments can be divided into twmps. In the first group we
experimentally test the iterative procedure (8) ttoee aforementioned factors (Chapter 4).
Here the surface gravity disturbances as the imjouindary conditions in the collocation
points are generated from EGM2008. Consequenthy,nilimerical solutions by BEM are
assumed to converge to EGM2008. In the second gobupe numerical experiments we
replace the surface gravity disturbances at oceaas/by values evaluated from the DNSCO08
gravity anomaly dataset. Such gravity data can desidered as real input data at oceans.
Then we are interesting how the obtained BEM sotutiliffers from EGM2008, the most
detailed and precise global gravity field modgbegsent.

After preparing input data we perform several lasgale parallel computations for
different discretization levels (Tab.2) using thanslard MPI (Message Passing Interface)
subroutines (Aoyama and Nakano 1999). All obtaimecherical solutions are compared with
EGM2008. Statistical characteristics of residuaés@nsidered as quality criteria. In the first
group of experiments, where the setup is generfabed EGM2008, we test how LWES is
reduced by the iterative procedure (8). For sucaipgees we consider the residuals only at
oceans due to the fact that our numerical solutesrscomputed at points on the complicated
Earth’s surface, and high residuals in extremelyumt@nous regions could significantly
influence our estimations.

In case of the resolution 0.2 deg (Tab.2, 1 215 @0ifbcation points) we test an
iterative procedure for different sources of apprate values used in the first iterative step.
We consider two cases of such approximate values(i) obtained from the finest numerical
solution by BEM with the dense system matrix (tlesofution 0.523 deg and 177 506
collocation points (Tab.4)), and (ii) obtained frahe ITG-GRACEQ3S satellite geopotential
model (Mayer-Gurr 2007) up to degree 180. It iddewnt (Fig.1) that in both cases method



tends to the same value. More precise approximetees from ITG-GRACEOQSS lead to the
smaller LWES in the first iterative step, whichn®re appropriate to reach the final solution.

Figure 2 shows how a speed of tending is changsimigudifferent distance criteria for
far zones. In case of the resolution 0.36 deg wepeawe results of the iterative procedure (8)
for three different distance criteria: 3 189 kai2j, 1 595 km &/4) and 911 kmd/7), wherea
is the semimajor axis of the reference ellipsoidpérently, the speed of tending is higher for
the bigger distance criterion (Fig.2). In case ltd biggest distance criterion the standard
deviations are almost the same in each iteratep, sthile for the smaller distance criteria
they are slightly improved from worse values in fingt iterative steps (Fig.2).

All these experiences encouraged us to refine igeradization of the Earth’s surface
up to the resolution 0.1 deg (Tab.2, 4 860 002ocalion points), which is comparable with
the resolution of EGM2008 (SH up to degree and ro&lE50). In comparison with the
resolution 0.2 deg, such refinement implies andase of the collocation points by the factor
4 and an increase of memory requirements as wellRid time by the factor 16 (Tab.2).
Consequently the distance criterion for far zonesds to be decreased from 911 kafv) to
213 km @/30) due to the available memory limit 128 GB (Tab.Approximate values
obtained from ITG-GRACEO3S are used for the elimaraof far zone’s interactions in the
first iterative step. A slow speed of tending daethte small distance criterion for far zones
forced us to use an average of tfiéahd 4 iterations as approximate values for the next
iterative step (Fig.3, Tab.3). Since the additiomntarations do not change the results
considerably, we stop the process in tlidtérative step. The residuals between the obtained
numerical solution by BEM and EGM2008 are depidteflig.4a. Figure 5 shows LWES as a
difference between the numerical solutions in #s &nd first iterative steps.

In order to illustrate how a precision of numericasults increases by refining the
distretization of the Earth’s surface, we summarsztatistical characteristics of residuals
between the numerical solutions by BEM and EGM2G08B different levels of the
discretization (Tab.4). The first two columns regaet large-scale computations with the
dense system matrix and the last three columnsgmond to more refined discretization
levels using the elimination of far zones’ interags and the iterative procedure (8). It is
evident that a successive refinement of the digatedn results in decreasing of all statistical
characteristics, i.e., step by steps leads to mogeise numerical solutions. The final mean
values of residuals (after reducing LWES by theaiige procedure) indicate that numerical
solutions on coarser grids include an overall sHiftis shift is decreasing by refining the
discretization. Table 4 also shows computatiospkats like a number of processors used for
parallel computations, necessary memory requiresn&RU time for the matrix assembling
and the BICGSTAB linear solver as well as the t@RBU time per processor.

Finally we perform the same numerical experimenthwihe resolution 0.1 deg
replacing the surface gravity disturbances at oedan values evaluated from DNSCOS8.
According to authors (Andersen et al. 2008), DNSGBRAYV includes the altimetry-derived
free-air gravity anomalies at oceans/seas augmemntedGM2008 on lands. Thus for our
purposes we interpolate the free-air gravity angsallg in the collocation points from
DNSC08_GRAYV and transform them into the surfaceityalisturbances using EGM2008,

ax) = Ag°N%x) + 0.3085575°M*%%x) | [mGal] (9)

where FEM#?% s the height anomaly evaluated from EGM2008 updemree 2160.
Differences between the free-air gravity anomaéed surface gravity anomalies, relevant
only on lands, are neglected.



Statistical characteristics of residuals at collmra points between numerical
solutions in each iterative step and EGM2008 apctled in Fig.3 and Tab.3. The residuals
between the final numerical solution and EGM2008 @epicted in Fig.4b. A detail view of
maximal and minimal residuals in Himalayas is showiig.6. Figure 7 depicts the profiles
of both solutions, numerical solution by BEM and 2008, as well as their residuals in this
extremely mountainous region. Afterwards, the geéepial on the DNSC08 mean sea
surface is computed from the obtained disturbintemoal. Since the DNSCO08 altimetry-
derived gravity data represents a real input datacaans, we present how the computed
geopotential agree with one evaluated from EGM2@0gure 8 shows its overall behavior
for both gravity field models. Details at differemteans are depicted in Fig.9.

6 Discussions

Presented numerical experiments demonstrate abjagsof the proposed approach
for the high-resolution global gravity field modetf. The elimination of far zones’
interactions using approximate values from sageljeopotential models and the iterative
treatment can efficiently reduce enormous memoguirements and thus overcome a main
drawback of BEM applications. In a comparison wiiM (Greengard and Rokhlin 1987),
our approach is not so efficient in terms of CPdeticonsumption but it can reduce memory
requirements slightly better, since it does notumnegextra memory for auxiliary variables
necessary to perform FMM in 3D (octrees clusterigsygferical harmonics and expansions
coefficients). On the other hand, our approachdaak estimate of the approximation error
that exists for FMM, the panel clustering or watdlased compression technique. The
converging behavior of the iterative procedure &ehdemonstrated by the presented
numerical experiments.

Hence, the iterative procedure is mainly influenbgdthree aforementioned factors.
The higher distance criterion for far zones makeslinear system in Eq. (8) closer to the
original one in Eq. (7). Therefore a speed of tegds faster and only few iterations are
necessary to obtain a final result (Fig.2). Ondtteer side, this distance criterion needs to be
set for a particular discretization level in oraeat to overstep a memory limit of available
computer facilities. Consequently, we are forcedlate a small distance criterion for a very
refined discretization, which makes a tending speder. In this case it is possible to speed
up a process by averaging results from last twatitee steps and use it for next iteration
(Fig.3, Tab.3).

Accuracy of the approximate values used in thd fteyative step has an essential
impact on an initial LWES of the numerical solutitmt is later reduced by the iterative
procedure (8). Therefore a final numerical solutiam be obtained faster when using more
precise approximate values in the first iteratidocording to our experience, recent satellite
geopotential models, e.g. ITG-GRACEO03S up to de@f& offer more precise approximate
values used in the first iteration than our nunargolutions by BEM with the dense system
matrix computed on coarse grids (Fig.1).

A level of the discretization is fundamental fopmecision of the obtained numerical
results (Tab.4). A more refined discretization keéal a more precise solution despite the fact
that the distance criterion has to be decreasedpare values in Fig.1-3). This is promising
for further increasing of the resolution. Here weuhd like to emphasize that successive
refining of the discretization is very straightfame and step by step makes the problem
closer to reality. The only limit is memory availltly, which is more technical problem. In
this context, recent developments of HPC faciliies bringing new opportunities.

The final gravity field models represent the nurmarisolutions to FGBVP by the
direct BEM with the resolution 0.1 deg. Their comgan with EGM2008 at the collocation



points shows that agreement is better at oceags4(Frab.3). For the test setup generated
from EGM2008 the standard deviation of residualscaians is 0.055 GPU (1 GPU = 183n

?). In case that the DNSCO08 altimetry-derived gradiata are used at oceans, the standard
deviation is 0.077 GPU. Here negative residualsrea of the global minimum (south of
India) and positive residuals in area of the glamalximum (Oceania) ranging up #®.3
GPU indicates a small discrepancy (Fig.4b). Thsemipancy can also be notices as a slightly
different behavior of the geopotential on the DN8@fean sea surface (Fig.8-9). Taking into
account that long-wavelength part of gravity fiegddvery precisely obtained from satellite
missions, this discrepancy is probably caused byrtaccurate transformation (Eq. (9)) of the
altimetry-derived free-air gravity anomalies intbet surface gravity disturbances using
different parameters of the reference field.

For both setups, statistical characteristics ofdieds on lands are worse. The
standard deviation about 0.14 GPU (Tab.4, thedalsimn) is negatively affected by the high
residuals in extremely mountainous areas, espgdralHimalayas and Andes (Fig.4). Here
we remind that the numerical solution is computéd@nts on the complicated Earth’s
surface. A detail view of the residuals in Himalay@ig.6) and the profiles across both
solutions (Fig.7) show high positive residuals aBt7 GPU correlating with the topography
of the main range of Himalayas and negative ressdyato -1.4 GPU in the negative isostatic
zones around the Tibetan plateau. Surprisinglylyaimg the profile across the main range of
Himalayas (Fig.7, at the bottom), local minimume aimost identical, while local maximums
are significantly higher in case of the numericduson by BEM.

Comparing the achieved numerical results with mnesiones published i€ gnderlik
et al. 2008), one can see a significant improvem&nnain difference arises from the fact
that in the previous case we generated input sairfmavity disturbances from EGM96. It
results in striking negative residuals in zoneshef high deflections of vertical(nderlik et
al. 2008, Fig.4) and in the overall negative b em of the numerical solution with respect
to EGM96 Cunderlik et al. 2008, Tab.3). In this paper, ingavity data are generated from
more complex and realistic sources, i.e. at firstnf EGM2008 and then from the DNSCO08
altimetry-derived gravity data at oceans. Therefibre numerical results presented in this
paper are significantly better although the nunat@pproach is practically the same.

In a comparison with results published Gtufderlik and Mikula, 2009), the resolution
of the new gravity field model is two times high@rl deg with respect to 0.2 deg) and the
iterative procedure of the elimination of far zonederactions is introduced to reduce the
initial LWES in the numerical solution. The refinem of the discretization makes the
numerical solution more detailed. This can be séem a smoother behavior of the
geopotential evaluated on the DNSC08 mean seacsucfamparing (Fig.8-9) with (Fig.2-3)
in (Cunderlik and Mikula, 2009).

Finally we would like to outline several advantagefsthe presented numerical
approach that could be useful for future invesigyes of the gravity field modelling. A main
advantage consists in straightforward refining loé tdiscretization. Although it rapidly
increases memory requirements, the eliminationaof Zones’ interactions can efficiently
overcome this problem. Then it is possible to iaseea resolution of the global gravity field
models beyond the resolution of EGM2008. A diseedton of the real Earth’s surface makes
the problem closer to reality. In addition, a tgafation of the Earth’s surface can be done
directly from points of discrete terrestrial gra@tmc measurements. Therefore all drawbacks
connected with an interpolation of gravity dataotigh an evaluation of the topographic
corrections can vanish. Moreover, a combinatiorteofestrial gravimetry with precise 3D
positioning by GNSS yields consistent surface gyadisturbances those are independent
from regional vertical datums. An access of suda @& highly required in order to achieve



more precise global gravity field models that cob&luseful for solving the vertical datum
problem.

7 Summary and conclusions

The direct formulation of the boundary elementhodtgives a numerical solution to
the fixed gravimetric boundary-value problem dilecat points on the Earth’'s surface.
A refinement of the discretization is essential focreasing a precision of the obtained
numerical solutions. Consequently large memory irequents need to be reduced. An
elimination of far zones’ interactions using appnoate values from satellite geopotential
models is presented as an efficient tool. InacguEcsuch approximate values leads to a
long-wavelength error surface included in the aotdinumerical solution that is reduced by
an iterative procedure. Presented numerical exgatisn demonstrate how the iterative
procedure tends to certain values. Such procdasfluenced by the distance criterion for far
zones, a level of the discretization as well asiemy of the approximate values used in the
first iterative step.

The final high-resolution numerical solutions ohtd by the direct BEM represent
the gravity field models with the resolution 0.1gdéat is similar to the resolution of the
EGM2008 geopotential model. For the test setup g¢ead from EGM2008 the agreement
with this model is better. Here the standard demiabf residuals at collocation points at
oceans is 0.055 GPUHK.6 cm). In case of the DNSCO08 altimetry-deriveavgy data used at
oceans, the standard deviation is 0.077 GBU8(cm). It is due to negative residuals in area
of the global minimum and positive residuals inaacé the global maximum ranging up to
+0.3 GPU. The highest residuals are in Himalayasfamikes. They indicate a discrepancy of
both gravity field models in extremely mountainesegions.

The obtained numerical results and a possibilitgtadightforward refinements of the
discretization demonstrate the proposed approadiabsel for the high-resolution global
gravity field modelling. Further improvements cae achieved by a consideration of the
tangential components of the oblique derivativescdl refinements of the global solutions
based on the adaptive refinement procedures aveladdlenging for further investigations.
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Mesh size Bias - T

N h [km?.s7 : {ksz.s'2|1| i

5402 3° -0.06828 0.002469
12 152 2° -0.03033 0.001085 2.028
21 602 1.5° -0.01705 0.000604 2.036
48 602 1° -0.00757 0.000263 2.051
60 002 0.9° -0.00613 0.000212 2.046
86 402 0.75° -0.00426 0.000145 2.083
124 418 0.625° -0.00296 0.000099 2.093
177 506 0.523° -0.00207 0.000068 2.108

Tab.1: The experimental order of convergence (EQi@)e numerical method by the direct
BEM in case of the gravitational potential geneaidig the artificial sphere

Number of points: N 48 602 60 002 86 402 124418 | 177506 | 375002 | 1215002 | 4860 002
Resolution: Ad 1° 0.9° 0.75° 0.625° 0.523° 0.36° 0.2° 0.1°
Far zones’ dist. criterion no no no no no 3189 km 911 km 213 km
Memory | Dense M 18 GB 27GB 56 GB 116 GB | 235 GB 1.05TB 10.75TB |17197TB
n:}?;l]rtz- Sparse M 18 GB 27 GB 56 GB 116 GB 235GB | 110.2GB | 82.49GB | 79.19 GB
% of full matrix 100% 100% 100% 100% 100% 10.2% 0.75% 0.05%

Tab.2: Levels of the disctretization and the cqroesling memory requirements for the dense
system matrix and for the sparse one obtaineddglimination of far zones’ interactions



Setup EGM2008 DNSCO08
Iteration Mean | St.Dev.| Max. Min. Mean | St.Dev. | Max. Min.
1 -0.0226 |  0.0661 0.2248 | -0.6194 | -0.0075 | 0.0876 0.2901 | -0.6399
2 0.0001 | 0.0519 0.2178 | -0.6049 | 0.0044 | 0.0758 0.2906 | -0.6210
3 -0.0197 | 0.0552 0.2123 | -0.6178 | -0.0068 | 0.0777 0.2805 | -0.6335
4 -0.0039 | 0.0548 0.2175 | -0.6082 | 0.0039 | 0.0774 02911 | -0.6227
5 -0.0102 |  0.0547 0.2142 | -0.6137 | -0.0013 | 0.0774 0.2859 | -0.6279
6 -0.0103 | 0.0547 0.2141 | -0.6136 | -0.0014 | 0.0774 0.2858 | -0.6280

Tab.3: Statistical characteristics of residualsveein the numerical solution by BEM of the
resolution 0.1 deg (4 860 002 collocation pointsgj 8GM2008 at oceans using the iterative
procedure of the elimination of far zones’ interacs.
All values are in GPU (1 GPU = 10°rs?).



Number of points: N 124 418 177 506 375 002 1215002 4 860 002
Resolution: Ad 0.625° 0.523° 0.36° 0.2° 0.1°
System matrix dense dense Sparse sparse sparse

Far zones’ dist. criterion - - 3189 km 911 km 213 km
. Mean 0.279 -0.294 -0.119 -0.035 -0.010
Residuals
at oceans St.Dev. 0.642 0.572 0.255 0.081 0.055
(BEM ['G ';33%'}/'2008) Max. 6.663 4.375 3.290 1.016 0.214
Min. -4.624 -4.521 -2.845 -0.916 -0.614
Mean 0.218 -0.222 -0.255 -0.049 -0.003
Residuals
e — St.Dev. 1.153 0.798 0.527 0.192 0.140
(BEM " 'i%MZOOS) Max. 15.870 9.641 7.640 4.112 3.819
[ ] Min. -10.298 -7.819 -8.082 -3.401 -1.402
Total memory requirements 116 GB 235GB 121 GB 10 2GB 119 GB
Number of processors 16 16 16 16 16
CPU time / matrix assembly 0:11:03 0:30:16 0:48:31 4:24:39 103 :45:58
processor | BICGSTAB (iter) 0:07:58 (13) | 0:11:22 (13) | 0:01:47 (10) | 0:02:41 (11) | 0:02:50 (14)
(sl Motal 0:19:02 0:41:60 0:50:21 4:28:12 103:49:01

Tab.4: Statistical characteristics of residualsveein the numerical solution by BEM and
EGM2008 for different discretization levels and qurtational aspects (1 GPU = 16.57)
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Fig.1: Statistical characteristics of residualsa@etn the numerical solution by BEM
(the resolution 0.2 deg) and EGM2008 at oceangjubim iterative procedure for the
elimination of far zones’ interactions. Approximatdues in the first iterative step are
obtained (i) from the numerical solution by BEM @wcoarser grid (red line), and (ii) from the
ITG-GRACEO3S satellite geopotential model (blue)ifl GPU = 10 ms?).
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Fig.2: Statistical characteristics of residualsigsin the numerical solution by BEM
(the resolution 0.36 deg) and EGM2008 at oceans.ifEnative procedure for the elimination
of far zones’ interactions using different distacciéeria:
a) blue line — 3 189 km, b) red line — 1 595 kmbi@wn line — 912 km
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Fig.3: Statistical characteristics of residualsi@stn the numerical solutions by BEM
(the resolution 0.1 deg) and EGM2008 at oceans.ififhd data are generated from (i)
EGM2008 (red line), and (ii) DNSCO08 altimetry-dexid/gravity data (blue line).
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Fig.4: Residuals between the numerical solutioBBW (the resolution 0.1 deg) and
EGMZ2008. Input data generated from a) purely EGMR®) DNSCO08 at oceans and
EGM2008 on lands
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Fig.5: The long-wavelength error surface (LWESaakfference between the numerical
solutions in the last and the first iterative stépe resolution 0.1 deg, setup from EGM2008)

Fig.6: Details in Himalayas: a) the numerical soluty BEM (the resolution 0.1 deg), b)
EGM2008, and c) residuals between both solutions
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Fig.7: Profiles in Himalayas: a) the parallel dftizde crossing Mt.Everest,
b) the meridian crossing Mt.Everest, c) the mamge of Himalayas (blue line - the
numerical solution by BEM, red line - EGM2008, grdime — residuals BEM-EGM2008)
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Fig.8: The geopotential on the DNSC08 mean seacgidbtained a) from the numerical
solution by BEM (the resolution 0.1 deg) and bhireGM2008
(the constant 62 636 800.F s is removed)
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Fig.9: The geopotential on the DNSC08 mean seacgidbtained a) from the numerical
solution by BEM and b) from EGM2008, details afeliént oceans
(the constant 62 636 800.Fs¥ is removed)



