Aggregation procedure and fuzzy relation properties based on binary operations

Urszula Bentkowska and Anna Król

University of Rzeszów Poland

FSTA 2014, 27.01.2014

Contents

- Preliminaries
 - aggregation functions
 - domination
 - fuzzy relations
- Preservation of fuzzy relation properties
 - B-asymmetry and B-antisymmetry
 - total B-connectedness and B-connectedness
 - B-transitivity and negative B-transitivity
 - B_1 - B_2 -semitransitivity and B_1 - B_2 -Ferrers property

Preliminaries

Definition 1 (cf. T. Calvo et al.¹). Let $n \in \mathbb{N}$. A function $A : [0,1]^n \to [0,1]$ which is increasing, i.e.

$$A(x_1, ..., x_n) \leq A(y_1, ..., y_n)$$
 for $x_i, y_i \in [0, 1], x_i \leq y_i, i = 1, ..., n$

is called an aggregation function if

$$A(0, \dots, 0) = 0, \ A(1, \dots, 1) = 1.$$

Example 1. Let $t_1, ..., t_n, w_1, ..., w_n \in [0, 1]$. Aggregation functions are:

• the weighted minimum

$$F(t_1, ..., t_n) = \min_{1 \le k \le n} \max(1 - w_k, t_k), \ \max_{1 \le k \le n} w_k = 1,$$

• the weighted maximum

$$F(t_1, ..., t_n) = \max_{1 \le k \le n} \min(w_k, t_k), \ \max_{1 \le k \le n} w_k = 1,$$

¹T. Calvo, A. Kolesárová, M. Komorníková and R. Mesiar, Aggregation operators: properties, classes and construction methods, In T. Calvo, G. Mayor and R. Mesiar, eds., *Aggregation Operators vol. 97: Studies in Fuzziness and Soft Computing*, pp. 3–104, Physica-Verlag, Heildelberg, 2002

• the median value

$$\operatorname{med}(t_1, \dots, t_n) = \begin{cases} \frac{s_k + s_{k+1}}{2}, & \text{for } n = 2k\\ s_{k+1}, & \text{for } n = 2k+1 \end{cases}$$

where (s_1, \ldots, s_n) is the increasingly ordered sequence of the values t_1, \ldots, t_n , i.e. $s_1 \leq \ldots \leq s_n$.

Other examples of aggregation functions are:

• geometric mean

$$G(x_1,\ldots,x_n)=\sqrt[n]{x_1\cdot\ldots\cdot x_n},$$

• weighted means

$$A_w(x_1, \dots, x_n) = \sum_{k=1}^n w_k x_k$$
, for $w_k > 0, \sum_{k=1}^n w_k = 1$,

• quasi-arithmetic means

$$M_{\varphi}(x_1,\ldots,x_n) = \varphi^{-1}(\frac{1}{n}\sum_{k=1}^n \varphi(x_k)),$$

• quasi-linear means

$$F(x_1, ..., x_n) = \varphi^{-1}(\sum_{k=1}^n w_k \varphi(x_k)), \text{ for } w_k > 0, \sum_{k=1}^n w_k = 1,$$

where $x_1, \ldots, x_n \in [0, 1], \varphi : [0, 1] \to \mathbb{R}$ is a continuous, strictly increasing function.

Definition 2. Let $n \in \mathbb{N}$. We say that a function $F: [0,1]^n \to [0,1]$:

• has a zero element $z\in[0,1]$ if for each $k\in\{1,\ldots,n\}$ and each $x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n\in[0,1]$ one has

$$F(x_1, ..., x_{k-1}, z, x_{k+1}, ..., x_n) = z,$$

• is without zero divisors if

$$\forall_{x_1,\dots,x_n\in[0,1]} (F(x_1,\dots,x_n)=z \Rightarrow (\exists_{1\leqslant k\leqslant n} x_k=z)).$$

Definition 3 (Drewniak, Król 2010²). An operation $C:[0,1]^2 \to [0,1]$ is called a fuzzy conjunction if it is increasing with respect to each variable and

$$C(1,1) = 1$$
, $C(0,0) = C(0,1) = C(1,0) = 0$.

²J. Drewniak, A. Król, A survey of weak connectives and the preservation of their properties by aggregations, Fuzzy Sets and Systems, 161 (2010), 202–215.

An operation $D:[0,1]^2\to [0,1]$ is called a fuzzy disjunction if it is increasing with respect to each variable and

$$D(0,0) = 0$$
, $D(1,1) = D(0,1) = D(1,0) = 1$.

Corollary 1. A fuzzy conjunction has a zero element 0. A fuzzy disjunction has a zero element 1.

Example 2. Consider the following family of fuzzy conjunctions for $\alpha \in [0,1]$

$$C^{\alpha}(x,y) = \begin{cases} 1, & \text{if } x = y = 1 \\ 0, & \text{if } x = 0 \text{ or } y = 0 \\ \alpha & \text{otherwise} \end{cases}.$$

Operations C^0 and C^1 are the least and the greatest fuzzy conjunction, respectively. A fuzzy conjunction C^{α} has no zero divisors if and only if $\alpha \in (0,1]$. Other examples of fuzzy conjunction without zero divisors are:

$$C(x,y) = \begin{cases} 1, & \text{if } x = y = 1 \\ 0, & \text{if } x = 0 \text{ or } y = 0 \text{ ,} \\ x & \text{otherwise} \end{cases} \qquad C(x,y) = \begin{cases} 1, & \text{if } x = y = 1 \\ 0, & \text{if } x = 0 \text{ or } y = 0 \text{ .} \\ y & \text{otherwise} \end{cases}$$

Definition 4 (E. P. Klement et al.³). A triangular norm $T:[0,1]^2 \to [0,1]$ (triangular conorm $S:[0,1]^2 \to [0,1]$) is an arbitrary associative, commutative, increasing in each variable operation having a neutral element e = 1 (e = 0).

Corollary 2. A triangular norm (conorm) has a zero element z = 0 (z = 1).

 $T_M(s,t) = \min(s,t),$

Example 3 (E. P. Klement et al.³). The four well-known examples of t-norms Tand corresponding t-conorms S are:

$$T_M(s,t) = \min(s,t),$$
 $T_P(s,t) = st,$ $S_M(s,t) = \max(s,t),$ $S_P(s,t) = s + t - st,$ $T_L(s,t) = \max(s+t-1,0),$ $S_L(s,t) = \min(s+t,1),$ $T_D(s,t) = \begin{cases} s, & t = 1 \\ t, & s = 1 \\ 0, & otherwise \end{cases}$ $S_D(s,t) = \begin{cases} s, & t = 0 \\ t, & s = 0 \\ 1, & otherwise \end{cases}$

for $s, t \in [0, 1]$.

 $^{^3{\}rm E.P.}$ Klement, R. Mesiar and E. Pap, $\it Triangular Norms,$ Kluwer Acad. Publ., Dordrecht, 2000

Definition 5 (E. P. Klement et al.³). A strict t-norm $T : [0,1]^2 \to [0,1]$ is a t-norm which is continuous and strictly increasing in $(0,1]^2$.

Theorem 1 (J. Fodor, M. Roubens⁴). Any strict t-norm T is a function isomorphic to the product t-norm T_P , i.e.

$$T(x_1, x_2) = \varphi^{-1}(T_P(\varphi(x_1), \varphi(x_2))), \quad x_1, x_2 \in [0, 1],$$

where $\varphi:[0,1]\to[0,1]$ is an increasing bijection.

Corollary 3. Triangular norms: min, T_P , strict t-norms are functions without zero divisors.

Definition 6 (T. Calvo et al.⁵). Let $F:[0,1]^n \to [0,1]$. A function F^d is called a dual function to F, if for all $x_1, \ldots, x_n \in [0,1]$

$$F^d(x_1,\ldots,x_n) = 1 - F(1-x_1,\ldots,1-x_n).$$

F is called a self-dual function, if it holds $F = F^d$.

 $^{^4\}mathrm{J.}$ Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Acad. Publ., Dordrecht, 1994

⁵T. Calvo, A. Kolesárová, M. Komorníková and R. Mesiar, Aggregation operators: properties, classes and construction methods, In T. Calvo, G. Mayor and R. Mesiar, eds., Aggregation Operators vol. 97: Studies in Fuzziness and Soft Computing, pp. 3–104, Physica-Verlag, Heildelberg, 2002

Domination

Definition 7 (cf. B. Schweizer, A. Sklar⁶). Let $m, n \in \mathbb{N}$. A function $F: [0,1]^m \to [0,1]$ dominates function $G: [0,1]^n \to [0,1]$ ($F \gg G$) if for an arbitrary matrix $[a_{ik}] = A \in [0,1]^{m \times n}$ the following inequality holds

$$F(G(a_{11},...,a_{1n}),...,G(a_{m1},...,a_{mn})) \geqslant G(F(a_{11},...,a_{m1}),...,F(a_{1n},...,a_{mn})).$$

Theorem 2 (cf. S. Saminger et al.⁷). A function $F: [0,1]^n \to [0,1]$, which is increasing in each of its arguments dominates minimum if and only if for each $t_1, ..., t_n \in [0,1]$

$$F(t_1, ..., t_n) = \min(f_1(t_1), ..., f_n(t_n)),$$

where $f_k : [0,1] \to [0,1]$ is increasing with k = 1,...,n.

⁶B. Schweizer, A. Sklar, Probabilistic metric spaces, North Holland, New York, 1983.

⁷S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, *Internat. J. Uncertain.*, *Fuzziness, Knowl.-Based Syst.*, 10(Suppl.):11–35, World Scientific, 2002

Example 4 (cf. J. Drewniak, U. Dudziak⁸, cf. S. Saminger et al.⁹). The weighted geometric mean dominates t-norm T_P . The weighted arithmetic mean dominates t-norm T_L . The function

$$F(t_1, ..., t_n) = \frac{p}{n} \sum_{k=1}^n t_k + (1-p) \min_{1 \le k \le n} t_k$$
 (1)

dominates T_L , where $p \in (0,1)$. The weighted minimum dominates every t-norm T. Let us consider projections P_k . Then $F \gg P_k$ and $P_k \gg F$ for any function $F:[0,1]^n \to [0,1]$. Minimum dominates any fuzzy conjunction.

⁸J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, *Kybernetika*, 43(2):115–132, Institute of Information Theory and Automation Academy of Sciences of Czech Republic, 2007

⁹S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, *Internat. J. Uncertain.*, *Fuzziness, Knowl.-Based Syst.*, 10(Suppl.):11–35, World Scientific, 2002

Lemma 1 (J. Drewniak, A. Król¹⁰). Let $F : [0,1]^n \to [0,1]$, $F : [0,1]^n \to [0,1]$. If $F \gg G$, then $G^d \gg F^d$.

Corollary 4. Let $F:[0,1]^n \to [0,1]$, T be a t-norm, S be a corresponding dual t-conorm, C be a fuzzy conjunction and D be a corresponding dual fuzzy disjunction. If $F \gg T$, then $S \gg F^d$. If $F \gg C$, then $D \gg F^d$.

Example 5. The weighted arithmetic mean are dominated by S_L and the weighted maximum is dominated by any t-conorm S. Moreover, the function

$$F(t_1, ..., t_n) = \frac{p}{n} \sum_{k=1}^{n} t_k + (1-p) \max_{1 \le k \le n} t_k$$
 (2)

is dominated by S_L , where $p \in (0, 1)$.

¹⁰J. Drewniak and A. Król, On the problem of domination between triangular norms and conorms, *Journal of Electrical Engineering*, 56(12/s):59–61, Slovak Centre of IEE, 2005

A function $F: [0,1]^n \to [0,1]$, which is increasing in each of its arguments is dominated by maximum if and only if for each $t_1, ..., t_n \in [0,1]$

$$F(t_1, ..., t_n) = \max(f_1(t_1), ..., f_n(t_n)),$$

where $f_k \colon [0,1] \to [0,1]$ is increasing with k=1,...,n. Examples of such functions are:

if $f_k(t) = t$, k = 1, ..., n, then $F = \max$, if for a certain $k \in \{1, ..., n\}$, function $f_k(t) = t$ and $f_i(t) = 1$ for $i \neq k$, then $F = P_k$

- projections, if $f_k(t) = \min(v_k, t)$, $v_k \in [0, 1]$, k = 1, ..., n, $\max_{1 \le k \le n} v_k = 1$, then F is the weighted maximum.

Fuzzy relations

Definition 8 (L.A. Zadeh¹¹). A fuzzy relation on a set $X \neq \emptyset$ is an arbitrary function $R: X \times X \to [0,1]$. The family of all fuzzy relations on X is denoted by FR(X).

Definition 9 (cf. J. Fodor, M. Roubens¹²). Let $B, B_1, B_2 : [0, 1]^2 \to [0, 1]$ be binary operations. Relation $R \in FR(X)$ is:

- B-asymmetric, if $\bigvee_{x,y \in X} B(R(x,y), R(y,x)) = 0$,
- B-antisymmetric, if $\forall B(R(x,y), R(y,x)) = 0,$
- totally *B*-connected, if $\forall B(R(x,y), R(y,x)) = 1,$
- B-connected, if $\forall B \in R(x,y), R(y,x) = 1$,
- B-transitive, if $\forall B(R(x,y), R(y,z)) \leq R(x,z),$

¹¹L.A. Zadeh, Fuzzy sets, Inform. Control, 8:338–353, Elsevier, 1965

¹²J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Acad. Publ., Dordrecht, 1994

• negatively *B*-transitive, if $\forall B(R(x,y),R(y,z)) \ge R(x,z)$,

• B_1 - B_2 -Ferrers, if $\forall B_1(R(x,y), R(z,w)) \leq B_2(R(x,w), R(z,y)),$ $x,y,z,w \in X$

• B_1 - B_2 -semitransitive, if $\forall B_1(R(x,w), R(w,y)) \leq B_2(R(x,z), R(z,y)).$

Definition 10 (S. Saminger et al.¹³). Let $F : [0,1]^n \to [0,1], R_1, \ldots, R_n \in FR(X)$. An aggregated fuzzy relation $R_F \in FR(X)$ is described by the formula

$$R_F(x,y) = F(R_1(x,y), \dots, R_n(x,y)), \quad x,y \in X.$$

A function F preserves a property of fuzzy relations if for every $R_1, \ldots, R_n \in FR(X)$ having this property, R_F also has this property.

¹³S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, *Internat. J. Uncertain.*, *Fuzziness*, *Knowl.-Based Syst.*, 10(Suppl.):11–35, World Scientific, 2002

Preservation of fuzzy relation properties

Theorem 3 (cf. J. Drewniak, U. Dudziak¹⁴). Let card $X \ge 2$, B have a zero element 0 and be without zero divisors. A function F preserves B-asymmetry (B-antisymmetry) if and only if it satisfies the following condition for all $s, t \in [0, 1]^n$

$$\forall \min_{1 \le k \le n} \min(s_k, t_k) = 0 \Rightarrow \min(F(s), F(t)) = 0.$$
(3)

Example 6 (cf. J. Drewniak, U. Dudziak¹⁴). Let B be a fuzzy conjunction without zero divisors (e.g. a strict t-norm). The function $F = \min$ preserves B-asymmetry (B-antisymmetry). Functions F which has the zero element z = 0 with respect to certain coordinate, i.e.

$$\exists_{1 \le k \le n} \forall \forall_{i \ne k} \forall_{t_i \in [0,1]} F(t_1, \dots, t_{k-1}, 0, t_{k+1}, \dots, t_n) = 0$$

fulfil (3), so they preserve B-asymmetry (B-antisymmetry). In particular, the weighted geometric mean fulfil (3). As another example we may consider the median function. If a function F fulfils the following condition then we also get (3).

$$\forall \text{ card}\{k : t_k = 0\} > \frac{n}{2} \Rightarrow F(t) = 0.$$
(4)

¹⁴J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, *Kybernetika*, 43(2):115–132, 2007

Theorem 4 (cf. J. Drewniak, U. Dudziak¹⁵). Let card $X \ge 2$, B have a zero element 1 and be without zero divisors. A function F preserves total B-connectedness (B-connectedness) if and only if it satisfies the following condition for all $s, t \in [0, 1]^n$

$$\forall \max_{1 \le k \le n} \max(s_k, t_k) = 1 \Rightarrow \max(F(s), F(t)) = 1.$$
(5)

Example 7 (cf. J. Drewniak, U. Dudziak¹⁵). Let B be a fuzzy disjunction without zero divisors (e.g. a strict t-conorm). Examples of functions fulfilling (5) for all $s, t \in [0, 1]^n$ are $F = \max$, $F = \max$ or functions F with the zero element z = 1 with respect to a certain coordinate, i.e.

$$\exists_{1 \leq k \leq n} \forall \forall_{i \neq k} \forall_{t_i \in [0,1]} F(t_1, \dots, t_{k-1}, 1, t_{k+1}, \dots, t_n) = 1.$$

The dual property for (4) have the form

$$\bigvee_{t \in [0,1]^n} \operatorname{card}\{k : t_k = 1\} > \frac{n}{2} \Rightarrow F(t) = 1.$$

¹⁵J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, *Kybernetika*, 43(2):115–132, 2007

Theorem 5 (cf. J. Drewniak, U. Dudziak¹⁶). Let card $X \ge 3$, B has a zero element z = 0. If a function $F: [0,1]^n \to [0,1]$ preserves B-transitivity, then it dominates B $(F \gg B)$, it means that for all $(s_1,...,s_n), (t_1,...,t_n) \in [0,1]^n$

$$F(B(s_1, t_1), \dots, B(s_n, t_n)) \geqslant B(F(s_1, \dots, s_n), F(t_1, \dots, t_n)).$$

Theorem 6 (cf. J. Drewniak, U. Dudziak¹⁶). If a function $F: [0,1]^n \to [0,1]$, which is increasing in each of its arguments fulfils $F \gg B$, then it preserves B-transitivity.

Example 8 (cf. S. Saminger et al. 17). Minimum dominates any fuzzy conjunction C. Each quasi-linear mean dominates T_D . Moreover, for n=2 arbitrary t-norm F=T dominates T_D . The minimum, the weighted minimum and the projections dominate min. The weighted geometric mean preserves T_P -transitivity, the weighted arithmetic mean preserves T_L -transitivity, the minimum preserves T_L -transitivity with arbitrary t-norm T. The function F described by the formula (1) preserves T_L -transitivity.

¹⁶J. Drewniak, U. Dudziak, Preservation of properties of fuzzy relations during aggregation processes, *Kybernetika*, 43(2):115–132, 2007

¹⁷S. Saminger, R. Mesiar and U. Bodenhofer, Domination of aggregation operators and preservation of transitivity, *Internat. J. Uncertain.*, *Fuzziness*, *Knowl.-Based Syst.*, 10(Suppl.):11–35, 2002

Theorem 7. Let card $X \ge 3$, B has a zero element z = 1. An increasing in each of its arguments function $F : [0,1]^n \to [0,1]$ preserves negative B-transitivity if and only if $B \gg F$, it means that for any $(s_1,...,s_n)$, $(t_1,...,t_n) \in [0,1]^n$ the following inequality holds

$$B(F(s_1, \dots, s_n), F(t_1, \dots, t_n)) \geqslant F(B(s_1, t_1), \dots, B(s_n, t_n)).$$
 (6)

Example 9. The maximum preserves negative D-transitivity for any disjunction D. The weighted maximum preserves negative S-transitivity for any t-conorm S. The weighted arithmetic mean and the functions of the form (2) preserve negative S_L -transitivity. Moreover, negative S_M -transitivity (i.e. negative transitivity) is preserved if and only if a function F is of the form

$$F(t_1, ..., t_n) = \max(f_1(t_1), ..., f_n(t_n)),$$

for each $t_1, ..., t_n \in [0, 1]$ and $f_k : [0, 1] \rightarrow [0, 1]$ being increasing with k = 1, ..., n.

Theorem 8. If a function $F: [0,1]^n \to [0,1]$, which is increasing in each of its arguments fulfils $F \gg B_1$ and $B_2 \gg F$, then it preserves B_1 - B_2 -Ferrers property.

Theorem 9. If a function $F: [0,1]^n \to [0,1]$, which is increasing in each of its arguments fulfils $F \gg B_1$ and $B_2 \gg F$, then it preserves B_1 - B_2 -semitransitivity.

Example 10. The weighted arithmetic mean preserve B_1 - B_2 -Ferrers property and B_1 - B_2 -semitransitivity for t-norm $T_L = B_1$ and t-conorm $S_L = B_2$.

Example 11. Conditions given in Theorems 8 and 9 are only the sufficient ones. Let us consider function F(s,t) = st (so $F = T_P$) and fuzzy relations presented by the matrices

$$R_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad R_2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Relations R_1 , R_2 are min-max-Ferrers (J. Fodor, M. Roubens¹⁸) and min-max-semitransitive. Moreover $R = F(R_1, R_2)$ is both min-max-Ferrers and min-max-semitransitive, where $R \equiv 0$. However, it is not true that $F \gg \min$ (the only t-norm that dominates minimum is minimum itself).

 $^{^{18}\}mathrm{J.}$ Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Acad. Publ., Dordrecht, 1994